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Thread vs Process

Thread vs Process

Memory space
shared ↔ distinct

Context switch
cheap ↔ expensive

Synchronization ve communication
user mode/simple ↔ kernel mod/complex
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Thread vs Process

Threads of the same process

share:

memory space

files

environment

quota and resources

signal disposition

differ:

run-time stack, stack pointer

register context

instruction pointer

signal mask
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Thread Models

Thread Models

User space threads
very fast, simple, portable
ideal for single processor
cannot utilize multiple processors/core

Lightweight Processes (Linux 2.2-2.4)
Threads are simply processes sharing same memory space
Synchronization and signalling problem
Slow, utilizes multiple processors/core

M:N threading model
total number of threads is larger than kernel threads
cooperation of kernel and user thread scheduler
complicated implementation
fast and utilizes multiple processors/core

1:1 threading model (Linux 2.6, Solaris 10)
Each thread works in a separate kernel thread (LWP)
enhanced kernel support for lwp synchronization and signalling
fast and utilizes multiple processors/core
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Why to thread?

single processor case: utilize CPU in I/O bound jobs (GUI,
network)

multiple processor case: parallelism

dual core ready in desktop and laptops. 2 quad cores on
servers. SMP systems with 64 processors exist in some
archtectures.

Intel working on 40 -80 cores CPU. Sun already have 16 core
CPU with 16 threads per core.

Single thread applications might be obsolote in 10 years?
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Multiple processor and multicore

Symmetric Multi Processor systems (single shared memory,
multiple processors)

Multi-Core processors (multiple processor cores sharing some
cache memory in a single chip)

Hyper-threading (multiple ALU or FPU’s paralelized on a
single core)

Very low communication cost

Efficient MIMD parallelism when data is local

Cache utilization is still significant
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POSIX Thread Library

Started as user level library → now kernel/user space
interaction

Standard in all Unix alike systems

Microsoft OS’s have compatibility libraries
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Creating and terminating a thread

Creating and terminating a thread

pthread create(pthread t * tidp, pthread attr t *attr,

void *(*start)(void), void *arg)

Creates a new thread and puts the id on first parameter,
new threads starts by calling start function , with arg parameter

pthread exit(void *rval);

thread calls either this or returns from the start function as
return(rval) to terminate

pthread join(pthread t id, void **rval),
in order to get return value of a thread and wait for its termination

pthread t pthread self()

returns threads own identifier

Thread identifiers are integers in most implementation but POSIX
reserves it as a different type
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Example: Hello Threads

Example: Hello Threads

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void * h e l l ow o r l d (void * arg ) {

p r i n t f ("Hello , I am: pid %u tid %u \n",
g e t p i d (),( unsigned) p t h r e a d s e l f ());

}

int main(int argc ,char * a rgv [])
{

p t h r e a d t t r [5];
int i , r ;

for ( i =0; i <5; i ++)
p t h r e a d c r e a t e (& t r [ i ],NULL, h e l l owo r l d ,NULL);

for ( i =0; i <5; i ++)
p t h r e a d j o i n ( t r [ i ],NULL);

return 0;

}

10 / 17



Threads Multiple processor and multicore POSIX Threads

Example: Parallel Sort

Example: Parallel Sort

Partition, sort partitions, merge: O
(

N

P
log(N

P
) + N

)

In distributed systems:
O(Nlog(N)) < comm. + O

(

N

P
log(N

P
) + N

)

Merge Sort or Quick Sort
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Synchronization/Mutexes

Senkronizasyon/Mutex

Mutex: mutual exclusion on entrance to critical regions

works like binary semaphores

int pthread mutex init(pthread mutex t * mutex,

pthread mutexattr t *r attr);

int pthread mutex destroy(pthread mutex t * mutex);

int pthread mutex lock(pthread mutex t *mutex);

int pthread mutex trylock(pthread mutex t *mutex);

int pthread mutex unlock(pthread mutex t *mutex);
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Example: Still Dining Philosophers

Example: Still Dining Philosophers

Philosphers think for a while then eat

They need both forks

Two consecutive philosopher cannot
eat together

After eating for a while they stop and
think again

P1

P0

P4
P3

P2
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Example: Still Dining Philosophers

p th r e ad mutex t f o r k s [5];
void p h i l o s o p h e r (int * i p ) {

p th r e ad mutex t * s o l ,* sag ;
int i =* ip , z;

s o l = i ==0? f o r k s +4: f o r k s +( i -1); sag = f o r k s + i ;
for ( z =0;z <1000; z ++) {

u s l e e p (10000);

p th r e ad mut e x l o c k ( s o l );
p th r e ad mut e x l o c k ( sag );
p r i n t f ("Philosopher %d is eating %d\n", i , z);
u s l e e p (10000);

p r i n t f ("Philosopher %d finished eating %d\n", i , z );
p th r ead mutex un l o ck ( s o l );
p th r ead mutex un l o ck ( sag );

}

}

int main() {

p t h r e a d t p h i l s [5];
int ph i d s [5]={0,1,2,3,4}, i ,n;

for ( i =0; i <5; i ++) {

p t h r e a d mu t e x i n i t (&( f o r k s [ i ]),NULL));
for ( i =0; i <5; i ++) {

p t h r e a d c r e a t e (&( p h i l s [ i ]), NULL, ph i l o s o ph e r , (void *) &( ph i d s [ i ]));
}

for ( i =0; i <5; i ++) {

p t h r e a d j o i n ( p h i l s [ i ],NULL);
}

return 0;

}
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Two Phase Locking

Two Phase Locking

read locks are shared, write locks are exclusive

threads doing operations with different roles

int pthread rwlock init(pthread rwlock t * rwlock, ...

attr);

int pthread rwlock destroy(pthread rwlock t *rwlock);

int pthread rwlock rdlock(pthread rwlock t *rwlock);

int pthread rwlock wrlock(pthread rwlock t *rwlock);

int pthread rwlock unlock(pthread rwlock t *rwlock);

int pthread rwlock tryrdlock(pthread rwlock t *rwlock);

int pthread rwlock trywrlock(pthread rwlock t *rwlock);
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Conditions and signalling

Conditions and signalling

Synchronization on condition variables

Thread A: wait until condition holds
Thread B: wake A when condition holds

Condition is preserved by a mutex
int pthread cond init(pthread cond t * cond, ... * attr);

int pthread cond destroy(pthread cond t *cond);

int pthread cond wait(pthread cond t * cond,

pthread mutex t * mutex);

int pthread cond timedwait(pthread cond t * cond,

pthread mutex t * mutex, const struct timespec * timeout);

int pthread cond signal(pthread cond t *cond);

int pthread cond broadcast(pthread cond t *cond);
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Example: Producer/Consumer

Producer:

If queue is not full, insert item, wake consumer
If queue is full wait for empty slot

Consumer:

If queue is not empty, get item and wake consumer
If queue is empty, wait for a new item
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