
Threads Multiple processor and multicore POSIX Threads

CEng 332, Systems Programming and Support

Environments:
Threads

Onur Tolga Şehitoğlu

Computer Engineering, METU

April 10, 2008

1 / 17

Threads Multiple processor and multicore POSIX Threads

1 Threads
Thread vs Process
Thread Models

2 Multiple processor and multicore

3 POSIX Threads
Creating and terminating a thread
Example: Hello Threads
Example: Parallel Sort
Synchronization/Mutexes
Example: Still Dining Philosophers
Two Phase Locking
Conditions and signalling
Example: Producer/Consumer

2 / 17

Threads Multiple processor and multicore POSIX Threads

Thread vs Process

Thread vs Process

Memory space
shared ↔ distinct

Context switch
cheap ↔ expensive

Synchronization ve communication
user mode/simple ↔ kernel mod/complex

3 / 17

Threads Multiple processor and multicore POSIX Threads

Thread vs Process

Threads of the same process

share:

memory space

files

environment

quota and resources

signal disposition

differ:

run-time stack, stack pointer

register context

instruction pointer

signal mask

4 / 17

Threads Multiple processor and multicore POSIX Threads

Thread Models

Thread Models

User space threads
very fast, simple, portable
ideal for single processor
cannot utilize multiple processors/core

Lightweight Processes (Linux 2.2-2.4)
Threads are simply processes sharing same memory space
Synchronization and signalling problem
Slow, utilizes multiple processors/core

M:N threading model
total number of threads is larger than kernel threads
cooperation of kernel and user thread scheduler
complicated implementation
fast and utilizes multiple processors/core

1:1 threading model (Linux 2.6, Solaris 10)
Each thread works in a separate kernel thread (LWP)
enhanced kernel support for lwp synchronization and signalling
fast and utilizes multiple processors/core

5 / 17

Threads Multiple processor and multicore POSIX Threads

Why to thread?

single processor case: utilize CPU in I/O bound jobs (GUI,
network)

multiple processor case: parallelism

dual core ready in desktop and laptops. 2 quad cores on
servers. SMP systems with 64 processors exist in some
archtectures.

Intel working on 40 -80 cores CPU. Sun already have 16 core
CPU with 16 threads per core.

Single thread applications might be obsolote in 10 years?

6 / 17

Threads Multiple processor and multicore POSIX Threads

Multiple processor and multicore

Symmetric Multi Processor systems (single shared memory,
multiple processors)

Multi-Core processors (multiple processor cores sharing some
cache memory in a single chip)

Hyper-threading (multiple ALU or FPU’s paralelized on a
single core)

Very low communication cost

Efficient MIMD parallelism when data is local

Cache utilization is still significant

7 / 17

Threads Multiple processor and multicore POSIX Threads

POSIX Thread Library

Started as user level library → now kernel/user space
interaction

Standard in all Unix alike systems

Microsoft OS’s have compatibility libraries

8 / 17

Threads Multiple processor and multicore POSIX Threads

Creating and terminating a thread

Creating and terminating a thread

pthread create(pthread t * tidp, pthread attr t *attr,

void *(*start)(void), void *arg)

Creates a new thread and puts the id on first parameter,
new threads starts by calling start function , with arg parameter

pthread exit(void *rval);

thread calls either this or returns from the start function as
return(rval) to terminate

pthread join(pthread t id, void **rval),
in order to get return value of a thread and wait for its termination

pthread t pthread self()

returns threads own identifier

Thread identifiers are integers in most implementation but POSIX
reserves it as a different type

9 / 17

Threads Multiple processor and multicore POSIX Threads

Example: Hello Threads

Example: Hello Threads

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void * h e l l ow o r l d (void * arg) {

p r i n t f ("Hello , I am: pid %u tid %u \n",
g e t p i d (),(unsigned) p t h r e a d s e l f ());

}

int main(int argc ,char * a rgv [])
{

p t h r e a d t t r [5];
int i , r ;

for (i =0; i <5; i ++)
p t h r e a d c r e a t e (& t r [i],NULL, h e l l owo r l d ,NULL);

for (i =0; i <5; i ++)
p t h r e a d j o i n (t r [i],NULL);

return 0;

}

10 / 17

Threads Multiple processor and multicore POSIX Threads

Example: Parallel Sort

Example: Parallel Sort

Partition, sort partitions, merge: O
(

N

P
log(N

P
) + N

)

In distributed systems:
O(Nlog(N)) < comm. + O

(

N

P
log(N

P
) + N

)

Merge Sort or Quick Sort

11 / 17

Threads Multiple processor and multicore POSIX Threads

Synchronization/Mutexes

Senkronizasyon/Mutex

Mutex: mutual exclusion on entrance to critical regions

works like binary semaphores

int pthread mutex init(pthread mutex t * mutex,

pthread mutexattr t *r attr);

int pthread mutex destroy(pthread mutex t * mutex);

int pthread mutex lock(pthread mutex t *mutex);

int pthread mutex trylock(pthread mutex t *mutex);

int pthread mutex unlock(pthread mutex t *mutex);

12 / 17

Threads Multiple processor and multicore POSIX Threads

Example: Still Dining Philosophers

Example: Still Dining Philosophers

Philosphers think for a while then eat

They need both forks

Two consecutive philosopher cannot
eat together

After eating for a while they stop and
think again

P1

P0

P4
P3

P2

13 / 17

Threads Multiple processor and multicore POSIX Threads

Example: Still Dining Philosophers

p th r e ad mutex t f o r k s [5];
void p h i l o s o p h e r (int * i p) {

p th r e ad mutex t * s o l ,* sag ;
int i =* ip , z;

s o l = i ==0? f o r k s +4: f o r k s +(i -1); sag = f o r k s + i ;
for (z =0;z <1000; z ++) {

u s l e e p (10000);

p th r e ad mut e x l o c k (s o l);
p th r e ad mut e x l o c k (sag);
p r i n t f ("Philosopher %d is eating %d\n", i , z);
u s l e e p (10000);

p r i n t f ("Philosopher %d finished eating %d\n", i , z);
p th r ead mutex un l o ck (s o l);
p th r ead mutex un l o ck (sag);

}

}

int main() {

p t h r e a d t p h i l s [5];
int ph i d s [5]={0,1,2,3,4}, i ,n;

for (i =0; i <5; i ++) {

p t h r e a d mu t e x i n i t (&(f o r k s [i]),NULL));
for (i =0; i <5; i ++) {

p t h r e a d c r e a t e (&(p h i l s [i]), NULL, ph i l o s o ph e r , (void *) &(ph i d s [i]));
}

for (i =0; i <5; i ++) {

p t h r e a d j o i n (p h i l s [i],NULL);
}

return 0;

}

14 / 17

Threads Multiple processor and multicore POSIX Threads

Two Phase Locking

Two Phase Locking

read locks are shared, write locks are exclusive

threads doing operations with different roles

int pthread rwlock init(pthread rwlock t * rwlock, ...

attr);

int pthread rwlock destroy(pthread rwlock t *rwlock);

int pthread rwlock rdlock(pthread rwlock t *rwlock);

int pthread rwlock wrlock(pthread rwlock t *rwlock);

int pthread rwlock unlock(pthread rwlock t *rwlock);

int pthread rwlock tryrdlock(pthread rwlock t *rwlock);

int pthread rwlock trywrlock(pthread rwlock t *rwlock);

15 / 17

Threads Multiple processor and multicore POSIX Threads

Conditions and signalling

Conditions and signalling

Synchronization on condition variables

Thread A: wait until condition holds
Thread B: wake A when condition holds

Condition is preserved by a mutex
int pthread cond init(pthread cond t * cond, ... * attr);

int pthread cond destroy(pthread cond t *cond);

int pthread cond wait(pthread cond t * cond,

pthread mutex t * mutex);

int pthread cond timedwait(pthread cond t * cond,

pthread mutex t * mutex, const struct timespec * timeout);

int pthread cond signal(pthread cond t *cond);

int pthread cond broadcast(pthread cond t *cond);

16 / 17

Threads Multiple processor and multicore POSIX Threads

Example: Producer/Consumer

Producer:

If queue is not full, insert item, wake consumer
If queue is full wait for empty slot

Consumer:

If queue is not empty, get item and wake consumer
If queue is empty, wait for a new item

17 / 17

	Threads
	Thread vs Process
	Thread Models
	

	Multiple processor and multicore
	POSIX Threads
	Creating and terminating a thread
	Example: Hello Threads
	Example: Parallel Sort
	Synchronization/Mutexes
	Example: Still Dining Philosophers
	Two Phase Locking
	Conditions and signalling
	Example: Producer/Consumer

