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Outline
 Key features of toolboxes
 Examples

 NN toolbox
 Functions
 GUI functions
 An example

 Statistical toolbox
 Functions
 A classification example
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Key features
 Many of the toolbox functions are MATLAB M-files 
 They implement the specialized algorithms
 To view and edit code you can type

 edit function_name
 You can extend the capabilities of toolboxes by 

writing your own M-files, or by using the toolbox in 
combination with other toolboxes

 Examples: Neural Network Toolbox, Signal 
Processing Toolbox and Statistics toolbox
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Neural Network Toolbox
 Analysis Functions
 Distance Functions
 Graphical Interface Functions
 Layer Initialization Functions
 Learning Functions
 Line Search Functions
 Net Input Functions
 Network Initialization Function
 Network Use Functions
 New Networks Functions
 Performance Functions
 Plotting Functions
 Processing Functions
 Simulink Support Function
 Topology Functions
 Training Functions
 Transfer Functions
 Utility Functions
 Vector Functions
 Weight and Bias Initialization Functions
 Weight Functions
 Transfer Function Graphs

http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/function.html
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Functions cont.

Widrow-Hoff weight and bias learning rulelearnwh

Self-organizing map weight learning functionlearnsom

Normalized perceptron weight and bias learning functionlearnpn

Perceptron weight and bias learning functionlearnp

Outstar weight learning functionlearnos

LVQ2 weight learning functionlearnlv2

LVQ1 weight learning functionlearnlv1

Kohonen weight learning functionlearnk

Instar weight learning functionlearnis

Hebb with decay weight learning rulelearnhd

Hebb weight learning functionlearnh

Gradient descent with momentum weight/bias learning functionlearngdm

Gradient descent weight/bias learning functionlearngd

Conscience bias learning functionlearncon

Learning Function
By-weight-and-bias layer initialization functioninitwb

Nguyen-Widrow layer initialization functioninitnw

Layer Initialization Functions

http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnwh.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnsom.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnpn.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnp.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnos.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnlv2.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnlv1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnk.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnis.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnhd.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learnh.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learngdm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learngd.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/learncon.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/initwb.html
http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/initnw.html
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Network Architecture

 Here the input vector p is represented by the solid dark vertical bar at the 
left. 

 A layer includes the combination of the weights, the multiplication and 
summing operation (here realized as a vector product Wp), the bias b, and 
the transfer function f. 

 Each time this abbreviated network notation is used, the sizes of the 
matrices are shown just below their matrix variable names. 

 This notation will allow you to understand the architectures and follow the 
matrix mathematics associated with them.
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Example
 net = newp([-2 2;-2 +2],1); 
 net.trainParam.epochs = 1; 

 The input vectors and targets are
 p = [[2;2] [1;-2] [-2;2] [-1;1]] t =[0 1 0 1] 

 Now train the network with
 net = train(net,p,t); 

 The new weights and bias are
 w = -3 -1 b = 0 

 Finally, simulate the trained network for each of the inputs.
 a = sim(net,p) 
 a = 0 0 1 1 

 The outputs do not yet equal the targets, so you need to train the network for more than 
one pass. Try four epochs. This run gives the following results:
 TRAINC, Epoch 0/20 
 TRAINC, Epoch 3/20 
 TRAINC, Performance goal met. 

 The final weights and bias are
 w = -2 -3 b = 1 

 The simulated output and errors for the various inputs are
 a = 0 1.00 0 1.00 
 error = [a(1)-t(1) a(2)-t(2) a(3)-t(3) a(4)-t(4)] 
 error = 0 0 0 0 
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Graphical user interface
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Create data
 Click Create and then click OK to create an input p. The Network/Data 

Manager window appears, and p shows as an input.
 Next create a network target. This time enter the variable name t, specify the 

value [0 0 0 1], and click Target under Data Type. Again click Create and OK. 
You will see in the resulting Network/Data Manager window that you now have t 
as a target as well as the previous p as an input.
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Create Network
 Now create a new network and call it ANDNet. 

Select the Network tab. Enter ANDNet under 
Name. Set the Network Type to Perceptron, and 
other parameters as shown in figure 
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View network
 Next you can look at the network by clicking View.
 This picture shows that you are about to create a network with 

a two units of inputs, a hardlim transfer function, and a single 
output. This is the perceptron network that you want. 
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Train perceptron
 To train the network, 

click ANDNet to 
highlight it. Then click 
Open. 

 This leads to a new 
window, labeled 
Network: ANDNet. 

 You can check on the 
initialization by clicking 
the Initialize tab. 

 Now click the Train 
tab. Specify the inputs 
and output by clicking 
the Training Info tab 
and selecting p from 
the list of inputs and t 
from the list of targets. 
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Training result
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Statistics Toolbox
 Data organization and management 
 Descriptive statistics 
 Statistical plotting and data visualization 
 Probability distributions 
 Analysis of variance (ANOVA) 
 Linear and nonlinear modeling 
 Multivariate statistics 
 Design of Experiments (DOE) 
 Hypothesis testing 
 Statistical Process Control (SPC) 
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Functions

General purposeUtility Functions

Interactive toolsGraphical User Interfaces

Monitoring industrial processesStatistical Process Control

Active data collectionDesign of Experiments

Stochastic data modelingMarkov Models

Categorical data modelingClassification

Identifying data clustersCluster Analysis

Dimension reduction techniquesMultivariate Methods

Continuous data modelingRegression Analysis

Explaining sample varianceAnalysis of Variance

Inferential statisticsHypothesis Tests

Describing distributions of dataProbability Distributions

Plotting data patterns and trendsStatistical Visualization

Summaries of dataDescriptive Statistics

Preparing for statistical processingOrganizing Data

Data input/output with external filesFile I/O

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq_w_hm.html
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Classification functions
 t = treefit(X,y)

t = treefit(X,y,param1,val1,param2,val2,...)
 t = treefit(X,y) creates a decision tree t for predicting 

response y as a function of predictors X. 
 X is an n-by-m matrix of predictor values. 
 y is either a vector of n response values (for 

regression), or a character array or cell array of 
strings containing n class names (for classification).

 Either way, t is a binary tree where each non-
terminal node is split based on the values of a 
column of X.
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Example
  load fisheriris;
   t = treefit(meas,species);
 treedisp(t,'names',
{'SL' 'SW' 'PL' 'PW'});
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Example cont.
 Start with a large tree.
 load fisheriris;
 t = treefit(meas,species','splitmin',5);

 Find the minimum-cost tree.
 [c,s,n,best] = treetest(t,'cross',meas,species);
 tmin = treeprune(t,'level',best);

 Plot smallest tree within 1 std of minimum cost tree.
 [mincost,minloc] = min(c);
 plot(n,c,'b-o',n,c+s,'r:',n(best+1),c(best+1),'bs', 

n,(mincost+s(minloc))*ones(size(n)),'k—'); xlabel('Tree size 
(number of terminal nodes)') 
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Result of plot function
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Adding a new toolbox
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Cont.
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PRTools toolbox
 PRtoolsPRTools supplies about 200 user routines 

for traditional statistical pattern recognition tasks. 
 It includes procedures for data generation, training 

classifiers, combining classifiers, features selection, 
linear and non-linear feature extraction, density 
estimation, cluster analysis, evaluation and 
visualization. 

 It is intended to aid students and researchers in 
designing and evaluating new algorithms and in 
building prototypes.   

 PRTools can be freely used for academic research.
 www.prtools.org

http://www.prtools.org/
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Thank you for listening


