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Message passing programs

• Separate processes
• Separate address spaces (distributed memory model)
• Processes execute independently and concurrently
• Processes transfer data cooperatively

Single Program Multiple Data (SPMD)
• All processes are the same program, but act on different data

Multiple Program Multiple Data (MPMD)
• Each process may be a different program.
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Cooperative Data Transfer

Send operation in process 1 is matched by receive operation in process 2:

memory

process 1

data

memory

process 2

send(data) receive(data)
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Examples of message passing approaches

Basic idea: each process gets a part of the problem

Data/domain decomposition
• Each process gets a different physical domain
• Typical iteration involves computation on interior of domain

followed by exchange of boundary data

Functional decomposition
• Each process gets “all” the data
• Each process does different work on that data
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Decomposing a Single Grid or Array

0 1

2 3

6CS 267 Intro to MPI W. Saphir 2/4/97

Boundary exchange

0

32

1
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All-to-all exchange: 2D FFT

0 1 2 3

(Perform 1D FFT
in vertical direction)

(Perform 1D FFT
in horizontal direction)
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Writing a parallel code

1. In most cases: choose best serial algorithm, not algorithm that is
easiest to parallelize.

(Choosing an explicit method because it is easier to parallelize may be a
mistake if it is 10x slower than an implicit method)

2. Three easy rules for a parallel implementation
• Load balance - keep all processors busy
• Large computation/communication ratio
• Few large messages rather than many small messages

3. Finally, optimize MPI stuff.

lesson: MPI is a small part of the code and not all that important
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MPI History

History
• MPI Forum: government, industry and academia. All major players

represented.
• Formal process began November 1992
• Draft presented at Supercomputing 1993
• Final standard (1.0) published May 1994
• Clarifications (1.1) published June1995
• MPI-2 process began April, 1995
• MPI-2 finalized June 1997 (planned)

Current status
• Public domain versions available from ANL/MSU (MPICH), OSC

(LAM), University of Edinburgh (CHIMP), MSU (Unify), etc.
• Proprietary versions available from Cray, Fujitsu, HP, IBM, Intel,

NEC, SGI, TMC, etc.
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Other Libraries

APPL Developed at NASA Lewis
Chameleon Lightweight portable library from ANL
CHIMP Developed in England
CMMD Native CM-5 library, from TMC
Express Proprietary (ParaSoft), portable
LAM A version of MPI is written on top of this
MPL (EUI-H) 1st native message passing library on the IBM SP2 (SP1)
NX Native library on Intel machines (Paragon, iPSC/860)
P4 Developed at ANL, successor to PARMACS
PARMACS Developed at ANL, used widely in Europe
PICL Emphasis on tracing
PVM From ORNL/UTK
TCGMSG Modeled on PARMACS
Zipcode Developed at Livermore

This is why MPI is important.
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An MPI Application

An MPI application

The elements of the application are:
• 4 processes, numbered zero through three
• Communication channels between them

The set of processes plus the communication channels is called
“MPI_COMM_WORLD”. More on the name later.

0

32

1
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“Hello World” — Fortran

program hello
implicit none
include ‘mpif.h’

integer me, nprocs, ierr

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, me, ierr)

print *, ‘ hello from proc ‘, me, ‘ of ‘, nprocs

call MPI_FINALIZE(ierr)
end
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“Hello World” — C

#include <mpi.h>
main(int argc, char *argv[])
{

int me, nprocs
MPI_Init(&argc, &argv)
MPI_Comm_size(MPI_COMM_WORLD, &nprocs)
MPI_Comm_rank(MPI_COMM_WORLD, &me)

printf(“Hi from node %d of %d\n”, me, nprocs)

MPI_Finalize()
}
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“Hello world” output

Run with 4 processes:

Hi from node 2 of 4
Hi from node 1 of 4
Hi from node 3 of 4
Hi from node 0 of 4

Note:
• Order of output is not specified by MPI
• Ability to use stdout is not even guaranteed by MPI!
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Critical MPI routines

MPI_Init
• Must always be called.
• State of program (e.g., number of processes) is undefined before
• Pass addresses of main() arguments in C.

MPI_Finalize
• Must always be called at end of program

<mpi.h> and ‘mpif.h’
• Define all predefined constants
• Declare functions (prototypes in C)
• Define all MPI-specific types (<mpi.h> only)
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C and Fortran differences

Names
• In C, routines names start with MPI_
• Next letter is capitalized, rest are lower case
• In Fortran, case does not matter (technically, upped case only)

Return value vs. ierr argument
• In C, almost all routines are functions that return an integer error

code
• In Fortran, almost all routines are subroutines that return an error

code in an integer “ierr” argument
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C and Fortran differences (II)

MPI objects

In C, all MPI objects are represented by new datatypes, which are
handles.

• MPI_Comm
• MPI_Datatype
• MPI_Status
• etc

These are typedefs, so that declarations look like:

MPI_Comm mycomm;

In Fortran, MPI objects are represented by integers
Except for the status object, which is

integer status(MPI_STATUS_SIZE)
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Point-to-point communication in MPI

memory

process 1

data

memory

process 2

MPI_Send(data, ...) MPI_Recv(data, ...)
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Point-to-point Example

Process 0 sends array “A” to process 1 which receives it as “B”

A:
#define TAG 123
double A[10];
MPI_Send(A, 10, MPI_DOUBLE, 1, TAG, MPI_COMM_WORLD)

B:
#define TAG 123
double B[10];
MPI_Recv(B, 10, MPI_DOUBLE, 0, TAG,

MPI_COMM_WORLD, &status)

or

MPI_Recv(B, 10, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status)
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MPI_Send in detail

MPI_Send(buffer, count, datatype, dest, tag, comm)

void *buffer

• Address of data (any type)
int count

• Number of items to send (not necessarily full size of buffer)
• Number of items of given datatype, not number of bytes

MPI_Datatype datatype

• Describes type of data to be sent
int dest

• Rank of destination process in comm
int tag

• Integer label for message
MPI_Comm comm

• Communicator containing group of processes and
communication channels
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Use of datatypes

Predefined types offer:

• Automatic data conversion on heterogeneous machines
• No need to calculate size of data in bytes

Later on: user-defined datatypes provide more functionality.
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Some Predefined datatypes

C:
MPI_INT
MPI_FLOAT
MPI_DOUBLE
MPI_CHAR
MPI_LONG
MPI_UNSIGNED

Fortran:
MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_CHARACTER
MPI_COMPLEX
MPI_LOGICAL

Language-independent
MPI_BYTE
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MPI_Recv in detail

MPI_Recv(buf, count, datatype, src, tag, comm, status)
void *buffer

• Location to place incoming data. Must have enough space.
int count

• Maximum number of items of given datatype to receive
• Actual number may be less but more is erroneous

MPI_Datatype datatype

• Describes type of data to be received
int src

• Rank of source process in comm
int tag

• Integer label for message
MPI_Comm comm

• Communicator containing group of processes and
communication channels

MPI_Status status

• Returns extra information about the incoming message
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Source/Destination/Tag

src/dest

dest

• Rank of process message is being sent to (destination)
• Must be a valid rank (0...N-1) in communicator

src

• Rank of process message is being received from (source)
• “Wildcard” MPI_ANY_SOURCE matches any source

tag
• On the sending side, specifies a label for a message
• On the receiving side, must match incoming message
• On receiving side, MPI_ANY_TAG matches any tag
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Status argument

In C: MPI_Status is a structure
• status.MPI_TAG is tag of incoming message

(useful if MPI_ANY_TAG was specified)
• status.MPI_SOURCE is source of incoming message

(useful if MPI_ANY_SOURCE was specified)
• How many elements of given datatype were received
MPI_Get_count(IN status, IN datatype, OUT count)

In Fortran: status is an array of integer
integer status(MPI_STATUS_SIZE)
status(MPI_SOURCE)
status(MPI_TAG)

In MPI-2: Will be able to specify MPI_STATUS_IGNORE
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Guidelines for using wildcards

Unless there is a good reason to do so, do not use wildcards

Good reasons to use wildcards:

• Receiving messages from several sources into the same buffer but
don’t care about the order (use MPI_ANY_SOURCE)

• Receiving several messages from the same source into the same
buffer, and don’t care about the order (use MPI_ANY_TAG)
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Exchanging Data

• Example with two processes: 0 and 1
• General data exchange is very similar

This is wrong!

memory

process 0

memory

process 1

MPI_Send(A, ...) MPI_Send(A, ...)
MPI_Recv(B, ...) MPI_Recv(B, ...)

A

B

A

B
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Exchanging data (II)

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

Process 0:
MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD)
MPI_Recv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &status)

Process 1:
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD)
MPI_Recv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &status)

The problem:
• MPI_Send is a non-local operation — may not complete until a

matching receive is posted.
• Both processes may block in MPI_Send, waiting for

corresponding receive. This is called deadlock.
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Deadlock

The MPI specification is wishy-washy about deadlock.

• A safe program does not rely on system buffering.

• An unsafe program may rely on buffering but is not as portable.

Ignore this. It is not helpful.

Better (practical wisdom):

• A correct program does not rely on buffering

• A program that relies on buffering to avoid deadlock is incorrect.

In other words, it is your fault it your program deadlocks. Do not blame
the vendor (unless there is a true bug in the implementation, of course.)
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Non-blocking operations

Split communication operations into two parts.
• First part initiates the operation. It does not block.
• Second part waits for the operation to complete.

MPI_Request request;

MPI_Recv(buf, count, type, dest, tag, comm, status)
=

MPI_Irecv(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)

MPI_Send(buf, count, type, dest, tag, comm)
=

MPI_Isend(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)



29CS 267 Intro to MPI W. Saphir 2/4/97

Deadlock

The MPI specification is wishy-washy about deadlock.

• A safe program does not rely on system buffering.

• An unsafe program may rely on buffering but is not as portable.

Ignore this. It is not helpful.

Better (practical wisdom):

• A correct program does not rely on buffering

• A program that relies on buffering to avoid deadlock is incorrect.

In other words, it is your fault it your program deadlocks. Do not blame
the vendor (unless there is a true bug in the implementation, of course.)

30CS 267 Intro to MPI W. Saphir 2/4/97

Non-blocking operations

Split communication operations into two parts.
• First part initiates the operation. It does not block.
• Second part waits for the operation to complete.

MPI_Request request;

MPI_Recv(buf, count, type, dest, tag, comm, status)
=

MPI_Irecv(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)

MPI_Send(buf, count, type, dest, tag, comm)
=

MPI_Isend(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)



31CS 267 Intro to MPI W. Saphir 2/4/97

Using non-blocking operations

#define MYTAG 123
#define WORLD MPI_COMM_WORLD
MPI_Request request;
MPI_Status status;

Process 0:
MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &request)
MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD)
MPI_Wait(&request, &status)

Process 1:
MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request)
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD)
MPI_Wait(&request, &status)

• No deadlock
• Data may be transferred “simultaneously”
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Using non-blocking operations (II)

Also possible to use nonblocking send:

#define MYTAG 123
#define WORLD MPI_COMM_WORLD
MPI_Request request;
MPI_Status status;
p=1-me; /* calculates partner in 2 process exchange */

Process 0 and 1:
MPI_Isend(A, 100, MPI_DOUBLE, p, MYTAG, WORLD, &request)
MPI_Recv(B, 100, MPI_DOUBLE, p, MYTAG, WORLD, &status)
MPI_Wait(&request, &status)

• No deadlock
• “status” argument to MPI_Wait doesn’t return useful info here.
• Better to use Irecv instead of Isend if only using one.
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p=1-me; /* calculates partner in 2 process exchange */

Process 0 and 1:
MPI_Isend(A, 100, MPI_DOUBLE, p, MYTAG, WORLD, &request)
MPI_Recv(B, 100, MPI_DOUBLE, p, MYTAG, WORLD, &status)
MPI_Wait(&request, &status)

• No deadlock
• “status” argument to MPI_Wait doesn’t return useful info here.
• Better to use Irecv instead of Isend if only using one.
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Overlapping communication and computation

On some computers it may be possible to do useful work while data is
being transferred.

MPI_Request requests[2];
MPI_Status statuses[2];

MPI_Irecv(B, 100, MPI_DOUBLE, p, 0, WORLD, &request[1])
MPI_Isend(A, 100, MPI_DOUBLE, p, 0, WORLD, &request[0])

.... do some useful work here ....

MPI_Waitall(2, requests, statuses)

• Irecv/Isend initiate communication
• Communication proceeds “behind the scenes” while processor is

doing useful work
• Need both Isend and Irecv for real overlap (not just one)
• Hardware support necessary for true overlap
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Operations on MPI_Request

MPI_Wait(INOUT request, OUT status)
• Waits for operation to complete
• Returns information (if applicable) in status
• Frees request object (and sets to MPI_REQUEST_NULL)

MPI_Test(INOUT request, OUT flag, OUT status)
• Tests to see if operation is complete
• Returns information in status if complete
• Frees request object if complete

MPI_Request_free(INOUT request)
• Frees request object but does not wait for operation to complete

MPI_Waitall(..., INOUT array_of_requests, ...)
MPI_Testall(..., INOUT array_of_requests, ...)
MPI_Waitany/MPI_Testany/MPI_Waitsome/MPI_Testsome

MPI_Cancel cancels or completes a request. Problematic.
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Non-blocking communication gotchas

Obvious caveats:

1. You may not modify the buffer after an Isend() and before the
corresponding Wait(). Results are undefined.

2. You may not look at or modify the buffer after an Irecv() and before
the corresponding Wait(). Results are undefined.

3. You may not have two pending Irecv()s for the same buffer.

Less obvious gotchas:

4. You may not look at the buffer after and Isend() and before the
corresponding Wait().

5. You may not have two pending Isend()s for the same buffer.
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Why the isend() restrictions?

• Everyone agrees they are user-unfriendly.
• Restrictions give implementations more freedom

Situation:
• Heterogeneous computer
• Byte order is different in process 1 and process 2

Implementation (example):
• Swap bytes in the original buffer
• Send the buffer
• Swap bytes back to original order

Comments:
• Implementation does not have to allocate any additional space.
• No implementations that currently do this (but there was)
• There are other scenarios that have the same restrictions
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MPI_Send semantics

Most important:
• Buffer may be reused after MPI_Send() returns
• May or may not block until a matching receive is called (non-local)

Others:
• Messages are non-overtaking messages
• Progress happens
• Fairness not guaranteed

MPI_Send provides a great deal of flexibility for implementations
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Other MPI point-to-point routines

MPI provides 4 communication codes, with slightly different semantics
• Standard MPI_Send/MPI_Isend
• Synchronous MPI_Ssend/MPI_Issend
• Ready MPI_Rsend/MPI_Irsend
• Buffered MPI_Bsend/MPI_Ibsend

Recommendation: Synchronous/Ready/Buffered are a waste of time.
They rarely help performance, often hurt, and can be difficult to use.

MPI provides “persistent communication:
• MPI_Send_init
• MPI_Ssend_init
• MPI_Rsend_init
• MPI_Bsend_init

These are even more of a waste of time.
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Model Problem

Heat Equation:

Straightforward discretization in 1-D, explicit (!) time stepping:

Rearranging:
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Model Problem: Fortran 77+

parameter (N = 1000)
real*8 U(N), dU(N)

c calculate dU
do i = 2, N-1

dU(i) = (sigma * dt / h) * ( U(i+1) - 2*U(i)+ U(i-1))
end do

c update U
do i = 2, N-1

U(i) = U(i) + dU(i)
end do

• go from 2 to N-1 to implement fixed temperature at boundary
• U initialized to an arbitrary temperature distribution
• dU(1) = dU(N) = 0



39CS 267 Intro to MPI W. Saphir 2/4/97

Model Problem

Heat Equation:

Straightforward discretization in 1-D, explicit (!) time stepping:

Rearranging:

∂u
∂t
------ σ∂2u

∂x2
---------=

ui
n 1+

ui
n

–

∆t
------------------------- σ

ui 1+
n

2ui
n

– ui 1–
n

+

h
----------------------------------------------=

ui
n 1+

ui
n σ∆t

h
--------- ui 1+

n
2ui

n
– ui 1–

n
+( )+ ui

n ∆ui
n

+= =

40CS 267 Intro to MPI W. Saphir 2/4/97

Model Problem: Fortran 77+
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Model Problem: Data Distribution

Focus attention on U = U + dU (N = 15)
Layout of U and dU in serial memory:

Possible layout of U and dU in distributed memory (3 processors):

• Computation can be done entirely in parallel.
• U and dU must be “aligned”
• U and dU must be distributed evenly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dU:

U:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dU:

U:
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Model Problem: Communication

Focus attention on computation of dU (3-point stencil)
In serial memory:

In distributed memory:

Computation can be done in parallel but requires some communication.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15dU:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15U:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U:

dU:
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Model Problem Data Layout

• Add “shadow entries” to local arrays
• Break calculation into two parts: communication + computation
• Computation is entirely local

0 1 2 43 5 6 10 11 12 1413 15 16

6 7 98 10

0 1 2 43 5 6 5 6 7 98 10 11 10 11 12 1413 15 16

1 2 43 5

5 6 7 98 10 11

11 13 1413 15

0 1 2 43 5 6 5 6 7 98 10 11 10 11 12 1413 15 16

U

U

dU

task 1 task 3task 2

U
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Model Problem Implementation: Setup

program heat
implicit none
include ’mpif.h’

integer N, MyN, ierr, me, nprocs, left, right
logical is_right, is_left
parameter (N = 1000)

c It’s impossible in F77 to determine the size of arrays
c at runtime so use F90 instead.

real, allocatable :: U(:), dU(:)

call mpi_init(ierr)
call mpi_comm_rank(MPI_COMM_WORLD, me)
call mpi_comm_size(MPI_COMM_WORLD, nprocs)

MyN = N/nprocs ! assume N is a multiple of nprocs for now
allocate(U(0:MyN+1), dU(0:MyN+1))
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Model Problem Implementation: Data Exchange

c set up topology
left = me - 1
right = me + 1
if (left .ge. 0) is_left = .TRUE.
else is_left = .FALSE.
if (right .lt. nprocs) is_right = .TRUE.
else is_right = .FALSE.

c ...
c exchange data

if (is_left) call mpi_irecv(U(0), 1, MPI_REAL,
$ left, 0, MPI_COMM_WORLD, lrequest, ierr)
if (is_right)call mpi_irecv(U(MyN+1), 1, MPI_REAL,
$ right, 0, MPI_COMM_WORLD, rrequest, ierr)
if (is_left) call mpi_send(U(1), 1, MPI_REAL,
$ left, 0, MPI_COMM_WORLD, ierr)
if (is_right)call mpi_send(U(MyN), 1, MPI_REAL,
$ right, 0, MPI_COMM_WORLD, ierr)
if (is_left) call mpi_wait(lrequest, status)
if (is_right)call mpi_wait(rrequest, status)
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Model Problem Implementation: Data Update

c calculate dU
do i = 1, MyN

dU(i) = (sigma * dt / h) * ( U(i+1) - 2*U(i)+ U(i-1))
end do

c update U
do i = 1, MyN

U(i) = U(i) + dU(i)
end do
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Model Problem Implementation: Data Update

c calculate dU
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Collective Operations

Collective communication is communication among a group of processes:
• Broadcast
• Synchronization (barrier)
• Global operations (reductions)
• Scatter/gather
• Parallel prefix (scan)
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Barrier

MPI_Barrier(communicator)

No process leaves the barrier until all processes have entered it.

Model for collective communication:
• All processes in communicator must participate
• Process might not finish until have all have started.
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Broadcast

MPI_Bcast(buf, len, type, root, comm)

• Process with rank = root is source of data (in buf)
• Other processes receive data

MPI_Comm_rank(MPI_COMM_WORLD, &myid);
if (myid == 0) {

/* read data from file */
}
MPI_Bcast(data, len, type, 0, MPI_COMM_WORLD);

Note:
• All processes must participate
• MPI has no “multicast” that sends to a subset of a communicator
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Reduction

Combine elements in input buffer from each process, placing result in
output buffer.

MPI_Reduce(indata, outdata, count, type, op, root, comm)
MPI_Allreduce(indata, outdata, count, type, op, comm)

• Reduce: output appears only in buffer on root
• Allreduce: output appears on all processes

operation types:
• MPI_SUM
• MPI_PROD
• MPI_MAX
• MPI_MIN
• MPI_BAND
• ...
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Data movement: all-to-all

All processes send and receive data from all other processes.

MPI_Alltoall(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,
comm)

For a communicator with N processes:
• sendbuf contains N blocks of sendcount elements each
• recvbuf receives N blocks of recvcount elements each
• Each process sends block i of sendbuf to process i
• Each process receives block i of recvbuf from process i

Example: FFT (usually)
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Other collective operations

There are many more collective operations provided by MPI:
MPI_Gather/Gatherv/Allgather/Allgatherv

• each process contributes local data that is gathered into a larger
array

MPI_Scatter/Scatterv
• subparts of a single large array are distributed to processes

MPI_Reduce_scatter
• same as Reduce + Scatter

Scan
• prefix reduction

The “v” versions allow processes to contribute different amounts of data
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Semantics of collective operations

For all collective operations:
• Must be called by all processes in a communicator

Some collective operations also have the “barrier” property:
• Will not return until all processes have started the operation
• MPI_Barrier, MPI_Allreduce, MPI_Alltoall, etc.

Others have the weaker property:
• May not return until all processes have started the operation
• MPI_Bcast, MPI_Reduce, MPI_Comm_dup, etc.
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Performance of collective operations

Consider the following implementation if MPI_Bcast:
if (me == root) {

for (i = 0; i < N; i++) {
if (i != me) MPI_Send(buf, ..., dest=i, ...);

}
} else {

MPI_Recv(buf, ..., src=i, ...);
}

Non-scalable: time to execute grows linearly with number of processes.

High-quality implementations of collective operations use algorithms
with better scaling properties if the network supports multiple
simultaneous data transfers.

• Algorithm may depend on size of data
• Algorithm may depend on topology of network
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An implementation of MPI_Bcast

0 1
step 1

1 3

0 2

step 2

3 7

2 6

1 5

0 4

step 3

Broadcast to N nodes can
be done in log(N) steps.
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Datatypes

• C
• MPI_INT
• MPI_FLOAT
• MPI_DOUBLE
• MPI_CHAR
• MPI_LONG
• etc

• Fortran
• MPI_INTEGER
• MPI_REAL
• MPI_DOUBLE_PRECISION
• MPI_CHARACTER
• MPI_LOGICAL
• etc

• Language-independent
• MPI_BYTE
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Why datatypes?

Motivation for basic datatypes:

• Automatic data conversion on heterogeneous systems
• different sizes
• different formats

• Automatic size calculation on any system
• useful in Fortran (no sizeof)

• More natural
• Specify count, not length in bytes

Heterogeneous?
• Many applications are hype
• Calculation on Cray plus Visualization on SGI is example of a

possibly good reason to support heterogeneity
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User-defined datatypes

Applications can define arbitrary composite datatypes
Motivation

• Naturalness
• Row or column of a matrix
• Complex data structure

• New functionality
• Reduction functions on complex data types
• Ability to send different types of data in same message

• Convenience
• Automatic local gather/scatter of data

• Performance
• In your dreams

But:
• Can be difficult to understand
• Can hurt performance if not careful
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• Specify count, not length in bytes

Heterogeneous?
• Many applications are hype
• Calculation on Cray plus Visualization on SGI is example of a

possibly good reason to support heterogeneity
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User-defined datatypes

Applications can define arbitrary composite datatypes
Motivation

• Naturalness
• Row or column of a matrix
• Complex data structure

• New functionality
• Reduction functions on complex data types
• Ability to send different types of data in same message

• Convenience
• Automatic local gather/scatter of data

• Performance
• In your dreams

But:
• Can be difficult to understand
• Can hurt performance if not careful
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User-defined datatypes: Contiguous

New datatype: 5 contiguous integers

MPI_Datatype mytype;
MPI_Type_contiguous(5, MPI_INT, &mytype);
MPI_Type_commit(&mytype);
/* ... use datatype ... */
MPI_Send(buf, 3, mytype, dest, tag, comm);
/* ... */
MPI_Type_free(&mytype);

• MPI_TYPE_CONTIGUOUS creates the new datatype
• MPI_TYPE_COMMIT makes it available for use
• New datatype can be used anywhere a basic datatype can be used
• MPI_TYPE_FREE deallocates storage
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Contiguous datatype example

typedef struct {
int a[5];

} multi_precision_real;

multi_precision_real x[100], y[100];
MPI_Datatype mp_type;
MPI_Op MP_ADD
void mp_add(void *a, void *b, MPI_Datatype type);
...
MPI_Op_create(mp_add, 1, &MP_ADD);
MPI_Type_contiguous(5, MPI_INT, &mp_type);
MPI_Type_commit(&mp_type);
...
MPI_Reduce(x, y, 100, mp_type, MP_ADD, 0, comm);
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Vector datatypes

Common situation: column of a matrix (C) or row of a matrix (Fortran)
Strided data

Matrix

Layout in memory
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Sending a column (C) of a matrix (I)

Solution 1: one at a time

/* send 12th column of this matrix */
int a[49][103];
int i;
for (i = 0; i < 49; i++) {

MPI_Send(&a[i][11], 1, MPI_INT, ...);
}

Solution 2: pack it up and send it
int col[49];
for (i = 0; i < 49; i++) col[i] = a[i][11];
MPI_Send(col, 49, MPI_INT, ...);
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MPI_Type_vector

MPI_Type_vector(count, blocklength, stride, oldtype,
newtype)

int a[49][103];
MPI_Datatype columntype;
MPI_Type_vector(49, 1, 103, MPI_INT, &columntype);
MPI_Type_commit(&columntype);

/* send 12th column*/
MPI_Send(&a[0][12], 1, columntype, ...);

Type_vector can be used for arbitrary (fixed) blocklength/stride, e.g.:

blocklength = 3
stride = 5

count = 4
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Type_struct

MPI_Type_struct(count, array_of_blocklengths,
array_of_displacements, array_of_types, newtype);

Allows arbitrary types/displacements

struct {
double x;
int a[4];

} mystruct;

int blocklengths[]={0, 4};
int displacements[]={0, 8};
MPI_Datatype types[] = {MPI_DOUBLE, MPI_INT};
MPI_type_struct(2, blocklengths, displacements, types,

&mystruct_type);

0 8 12 16 20
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Other type constructors

Hvector
• Like Vector but stride specified in bytes

Indexed
• Like vector but displacements, blocks may be different lengths
• Like struct, but single type and displacements in elements

Hindexed
• Like Indexed, but displacements in bytes

Other:
• Possible to have absolute addresses in datatypes by using address

for displacement (compute address using MPI_Address) and
MPI_BOTTOM for location of buffer.

• Possible to put “holes” in datatypes so that contiguous arrays
are aligned properly. See MPI_TYPE_UB and MPI_TYPE_LB.
These can be very confusing. Avoid if possible. The MPI-2 function
MPI_TYPE_RESIZED may make things easier.
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When to use user-defined datatypes

What’s the catch?

Complex datatypes can kill performance

• Most implementations pack data into a contiguous buffer and send
• Implementation packing is much slower than user packing
• Hidden holes in apparently contiguous datatype can dramatically

reduce performance
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The theoretical performance win

Consider sending a strided datatype.

Pipeline

• Nice idea
• No current implementations do this

Pack Send

time

Pack a block of data
Send it
While sending, pack next
etc.
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Datatype recommendation

For contiguous data: use datatypes.

For non-contiguous data:

• Structure code so that there is a clean interface to communication
• Write two versions of the communication module

• quick and dirty
• “the MPI Way”

Quick and dirty means:
• Pack the data into your own buffer
• Send as a contiguous MPI datatype

Really quick and dirty (not recommended):
• Use use MPI_BYTE for everything
• Only use if alignment prevents tight packing
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More information

Books
• Using MPI, by William Gropp, Ewing Lusk, and Anthony

Skjellum, published by MIT Press ISBN 0-262-57104-8
• MPI: The Complete Reference, by Snir, Otto, Huss-Lederman,

Walker, Dongarra. The MIT Press
• Parallel Programming with MPI, by Peter Pacheco. Morgan

Kauffman Publishers Inc..
The standard

- http://www.mcs.anl.gov/mpi/mpi-report-1.1/mpi-report.html

On-line Tutorials
• http://www.mcs.anl.gov/mpi/tutorial/

WWW
• http://www.mcs.anl.gov/mpi/index.html




