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Why HPC?
 Many important problems could not be solved yet even with 

the fastest computers available
 Faster computers enable the formulation of more interesting 

questions
 When a problem is solved, researchers find biggers to 

tackle



Grand Challenge Problem Areas
 Wheather forecasting
 Economic modeling
 Computer-aided design
 Drug design
 Exploring the origins of universe
 Searching for extra-terrestial life
 Computer vision
 Bio-informatics
 …



Sequential Processing 

 Single CPU



Parallel Processing will Help

 Modes of parallelism to achieve: 
– Pipeline parallelism
– Data parallelism
– Control parallelism



Pipeline Parallelism 
 A number of steps called segments or stages
 The output of one segment is the input of other segment

Stage 1 Stage 2 Stage 3



Data Parallelism 
 Applying the same operation simultaneously to elements of a data set



Control Parallelism 
 Applying different operations to different data elements simultaneously



What to Achieve: Speed-up
 It refers to how much a parallel algorithm is faster than a 

corresponding sequential algorithm
Sp = T1 / Tn

where
p is the number of processors
T1 is the execution time of the sequential algorithm
Tp is the execution time of the parallel algorithm with p processors

 Ideal case when Sp = p
 However, it may not possible to achieve

due to overheads, e.g. Communication, synchronization etc.
 Called scalable if its speed-up remains acceptable 

when p gets large



Parallel Computers:
Scale & Architecture
 Single chip
 Single system (node)
 Single location (cabinet, room, organization)
 Geographically distributed



Single Chip
 Pipelined

– Instructions are divided into a number of steps (segments, stages)
– At the same time, several instructions can be loaded in the machine 

and be executed in different steps
 Multi-Core

– aka Chip-level Multi-Processor (CMP) 
– Current processor trend
– Supports multi-threading successfully and efficiently in hardware



Single System
 Multiprocessors
 Consists of many fully programmable processors each 

capable of executing its own program
 Shared Address Space Architecture
 Types:

– SMP (Symmetric Multiprocessor)
» A small number of microprocessors connected by a high-speed 

bus or crossbar switch
– DSM (Distributed Shared Memory)

» The memory is physically distributed among nodes.
– PVP (Parallel Vector Processor)

» A small number of proprietary vector processors connected by a 
high-bandwidth crossbar switch



Single Location
 Multicomputers
 Consists of many processors with their own memory
 No shared memory
 Processors interact via message passing  loosely coupled 

system
 Types:

– MPP (Massively Parallel Processing)
» Total number of processors > 1000; e.g. BlueGene

– Cluster
» Each node in system has less than 16 processors.

– Constellation
» Each node in system has more than 16 processors



Geographically Distributed
 Grid(s)
 Interconnection of geographically distributed clusters or 

computers
 Very large capacity



Current Trend in Supercomputers

Interconnection Network

Memory
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Multiprocessors Multiprocessors Multiprocessors Multiprocessors

 Clusters of SMPs, 
– approaching to Constellations 



Parallel Programming Models
 Parallel programming models are categorized as

– Implicit parallelism vs. Explicit parallelism
– Data-parallel model vs. Control-parallelism
– Message-passing model vs. Shared-variable model
– Fine-grained vs. Coarse-grained parallelism

 Models are not and should not be specific to hardware. 
All should be able to be implemented on any hardware, 
theoretically.
– e.g. shared-variable programming on distributed memory hardware, 

or message-passing on shared memory



Implicit Parallelism
 The compiler and the run-time support system automatically 

exploit the parallelism from the sequential-like program 
written by users



Implicit Parallelism
 Ways to implement implicit parallelism

– Parallelizing (restructuring) compilers
» Compiler performs data-dependence and control-dependence 

analysis on a sequential program’s source code
» Uses transformation techniques to convert sequential code into 

parallel
– User directions

» User helps the compiler by providing additional information to 
guide the parallelization process or by inserting compiler 
directives in the source code

» User is responsible for ensuring that the code is correct after 
parallelization

– Run-time parallelization
» Involves both the compiler and the run-time system



Explicit Parallelism
 The representation of concurrent computations by means of 

primitives in the form of special-purpose function calls
 The programmer should explicitly use these primitives to 

achieve parallelism
 The absolute programmer control over the parallel execution



Data-Parallel Model
 The same instruction or program segment executes over 

different data sets simultaneously
 Massive parallelism is exploited at data set level
 Has a single thread of control
 Has a global naming space
 Applies loosely synchronous operation
 Parameter Study also falls into this category



Control-Parallelism
 aka Task parallelism or Function parallelism 
 A form of parallelization of computer code across multiple 

processors in parallel computing environments
 Focuses on distributing execution of tasks (processes or 

threads) across different parallel computing nodes 
(processors, cores)



Message-Passing Model
 Multithreading: program consists of multiple processes 

– Each process has its own thread of control
– Both control parallelism (MPMD) and data parallelism (SPMD) are supported

 Asynchronous Parallelism
– All process execute asynchronously
– Must use special operation to synchronize processes

 Multiple Address Spaces
– Data variables in one process is invisible to the others
– Processes interact by sending/receiving messages 

 Explicit Interactions
– Programmer must resolve all the interaction issues: data mapping, 

communication, synchronization and aggregation
 Explicit Allocation

– Both workload and data are explicitly allocated to the process by  the user



Shared-Variable Model
 Has a single address space
 Has multithreading and asynchronous model
 Data reside in a single, shared address space, thus does 

not have to be explicitly allocated
 Workload can be implicitly or explicitly allocated
 Communication is done implicitly

– Through reading and writing shared variables
 Synchronization is explicit



Fine-Grained Parallelism
 Generraly, every loop has a chance of parallelism
 In this model, many of these loops are parallelized
 No need to know the details of the source or the algorithm
 Needs too frequent data-distribution, sychronization and 

result-collection processes thrughout the execution 
– Not that suitable over message-passing platforms



Coarse-Grained Parallelism
 Wider loops or larger modules are made parallel
 Less often data-distribution, sychronization and result-

collection processes
 Source code and the algorithm need to be well-understood



Comments on Models
 Implicit parallelism

– Easy to use
– Can reuse existing sequential programs
– Programs are portable among different architectures

 Data parallelism
– Programs are always determine and free of deadlocks/livelocks
– Difficult to realize some loosely sync. program



Comments on Models
 Message-passing model

– More flexible than the data-parallel model
– Lacks support for the work pool paradigm and applications that need 

to manage a global data structure
– Widely-accepted 
– Exploit large-grain parallelism and can be executed on machines 

with native shared-variable model 
 Shared-variable model

– No widely-accepted standard  programs have low portability
– Programs are more difficult to debug than message-passing 

programs



Examples
 MPI
 POSIX Threads
 HPF
 OpenMP
 Unified Parallel C
 JEE with Web Services
 MatLab with Distributed Toolbox
 Workflows
 Hybrids



MPI (Message Passing Interface)
 Exploits explicit and message-passing parallelism
 Most suitable to achieve control-parallelism, 

but not that successful on fine-grained parallelism
 A standard portable message-passing library definition 

developed in 1993 by a group of parallel computer vendors, 
software writers, and application scientists. 

 Many implememantations exist, like MPICH, OpenMPI etc.
 Available to both Fortran and C programs 
 Available on a wide variety of parallel machines. 



MPI Example

#include <mpi.h>
#define N 1000000
main(){
  double pi, sums, v, w=1.0/N;
  int i, mid, nth;
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &mid);
  MPI_Comm_size(MPI_COMM_WORLD, &nth);
  for(i=mid; i<N; i+= nth) {
    v = (i+0.5) * w;
    sums += 4.0/(1.0+v*v);
  }
  MPI_Reduce(&sums,&pi,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
  pi *= w;
  if(mid == 0) printf("pi = %f\n",pi);
  MPI_Finalize();
}



POSIX Threads
 aka pthreads
 Belongs to explicit and shared-variable parallelism models
 Specified by the IEEE POSIX 1003.1c standard
 Requires significant programmer attention to detail
 Most suitable to achieve control-parallelism



POSIX Threads Example
#include <pthread.h>
#define MAX_THREADS 128
#define N 1000000
static int N_Threads = 0;
static double SUM[MAX_THREADS];
static double w;
main(){ 
  int i; double pi;
  pthread_t thr[MAX_THREADS];
  int args[MAX_THREADS];
  N_Threads = atoi(getenv("N_Threads"));
  w = 1.0/(N*N_Threads);
  pthread_setconcurrency(N_Threads);
  for(i=0; i<N_Threads−1; i++) {
    args[i] = i;
    if(pthread_create(&thr[i],(void*(*))PI,&args[i])){
      perror("Thread create"); exit(1);
    }
  }
  PI(&i); /* let main do part of the calculations */
  pi = SUM[i];
  for(i=0; i<N_Threads−1; i++) {
    pthread_join(thr[i], NULL);
    pi += SUM[i];
  }
  printf("pi = %f\n", pi*w);
}

void *PI(void *myid){
  int i; mid = *(int *)myid;
  double t = N*mid + 0.5;
  double ss = 0.0;
  for(i=0; i<N; i++) {
    v = (i+t)*w;
    ss += 4.0/(1.0+v*v);
  }
  SUM[mid] = ss;
  return NULL;
}



High Performance Fortran (HPF)
 aka Fortran 95
 An extension of Fortran 90 with constructs that support 

parallel computing, published by the High Performance 
Fortran Forum (HPFF)

 Assumes shared-variable model, and employs a 
parallelizing compiler

 Most of the users and vendors have moved to OpenMP



HPF Example

PROGRAM piprog
INTEGER, PARAMETER:: N=1000000
REAL (KIND=8):: pi, w=1.0/N
pi = SUM( (/ (4.0*w/(1.0+((i+0.5)*w)**2), i=1,N) /) )
PRINT *, pi
END



OpenMP (Open Multi-Processing)
 Employs semi-implicit with compiler drectives* and shared-

variable parallelism
 An implementation of multithreading
 Consists of a set of compiler directives, together with library 

routines and environment variables
 Currently only runs efficiently on shared-memory 

multiprocessor / multicore platforms
 In C/C++ and Fortran on many architectures
 Most suitable for implementing data parallel paradigm

(*) in some references, it is accepted as “explicit” due to the need for 
inserting these directives



OpenMP Example

#define N 1000000
main(){
  double pi, sums, v, w = 1.0/N; 
  int i;
#pragma omp parallel for private(i,v) reduction(+:sums)
  for(i=0; i<N; i++) {
    v = (i+0.5)*w;
    sums += 4.0/(1.0+v*v);
  }
  pi = sums*w;
  printf("pi = %f\n",pi);
}



Unified Parallel C (UPC)
 An extension of the C programming language designed for 

high-performance computing
 The programmer is presented with a single shared, 

partitioned address space, where 
– variables may be directly read and written by any processor, 
– but each variable is physically associated with a single processor

 UPC uses data-parallel model of computation
 Supports explicit parallelism and shared-variable models



UPC Example
#include <upc_relaxed.h>
#define N 4
#define P 4
#define M 4
shared [N*P/THREADS] int a[N][P],c[N][M];
shared [M/THREADS] int b[P][M];
void main() {
  int i,j,l;
  upc_forall(i=0;i<N;i++;&c[i][0]) {
    for(j=0;j<M;j++) {
      c[i][j]=0;
      for(l=0;l<P;l++) c[i][j] += a[i][l]*b[l][j]
    }
  }
}



MatLab with Distributed Toolbox

 MatLab with Distributed Computing Toolbox + MATLAB 
Distributed Computing Engine enable us to 
– develop distributed and parallel MatLab applications and 
– execute them on a cluster of computers without leaving your 

technical computing development 
 The toolbox and engine based on the MPI

– includes functions to support explicit communication, enabling you to 
develop parallel applications 

– supports parallel for loops and global array semantics via distributed 
arrays for creating parallel applications without explicit message 
passing 



JEE with Web Services
 Java objects and service based approach
 Originally a distributed platform, can also be used for 

parallelism
 Purely explicit 
 Easier to integrate with industrial projects



Workflows
 A dataflow-like approach applied to Grid environments
 Ready data (input, intermediate result) is transfered from its 

producer to consumer via file-transfer 
– kind of message-passing

 Modeled as a DAG where
– each vertex represents a task, and
– each edge represents a file-transfer operation



OpenMP + MPI + Workflows
 OpenMP  among the cores within a node
 MPI  among the nodes within a cluster
 Workflows  among the clusters within a Grid environment


