CS267

| ntroduction to M PI

Bill Saphir

wcs@ner sc.gov
510-486-5442

2/ 41 97

Message passing programs

Separate processes

Separate address spaces (distributed memory model)
Processes execute independently and concurrently
Processes transfer data cooper atively

Single Program Multiple Data (SPMD)
All processes are the same program, but act on different data

Multiple Program Multiple Data (MPMD)
Each process may be a different program.

Cooperative Data Transfer

Send operation in process 1 is matched by recelve operation in process 2.

TN
o
!‘1"“":

send(data) receive(data)

Examples of message passing approaches

Basic idea: each process gets a part of the problem

Data/domain decomposition
Each process gets a different physical domain
Typical iteration involves computation on interior of domain
followed by exchange of boundary data

Functional decomposition
Each process gets “all” the data
Each process does different work on that data

Decomposing a Single Grid or Array

Boundary exchange

A

\J

A

\J

All-to-all exchange: 2D FFT

0 1 2 3

(Perform 1D FFT
in vertical direction)

—
-~
0
(Perform 1D FFT
1 in horizontal direction)
2

Writing a parallel code
1. In most cases: choose best serial algorithm, not algorithm that is
easiest to parallelize.

(Choosing an explicit method because it is easier to parallelize may be a
mistake if it is 10x slower than an implicit method)

2. Three easy rulesfor a parallel implementation

L oad balance - keep all processors busy

L arge computation/communication ratio

Few large messages rather than many small messages
3. Finally, optimize MPI stuff.

lesson: MPI isasmall part of the code and not all that important

MPI History

History
MPI Forum: government, industry and academia. All magjor players
represented.
Formal process began November 1992
Draft presented at Supercomputing 1993
Final standard (1.0) published May 1994
Clarifications (1.1) published Junel995
MPI-2 process began April, 1995
MPI-2 finalized June 1997 (planned)

Current status
Public domain versions available from ANL/MSU (MPICH), OSC
(LAM), University of Edinburgh (CHIMP), MSU (Unify), etc.
Proprietary versions available from Cray, Fujitsu, HP, IBM, Intel,
NEC, SGI, TMC, etc.

Other Libraries

APPL
Chameleon
CHIMP
CMMD
Express
LAM

MPL (EUI-H)
NX

P4
PARMACS
PICL

PVM
TCGMSG
Zipcode

Developed at NASA Lewis

Lightweight portable library from ANL

Developed in England

Native CM-5 library, from TMC

Proprietary (ParaSoft), portable

A version of MPI iswritten on top of this

1st native message passing library on the IBM SP2 (SP1)
Native library on Intel machines (Paragon, iPSC/860)
Developed at ANL, successor to PARMACS
Developed at ANL, used widely in Europe

Emphasis on tracing

From ORNL/UTK

Modeled on PARMACS

Developed at Livermore

Thisiswhy MPI isimportant.

An MPI Application

An MPI application

The elements of the application are:
* 4 processes, numbered zero through three
« Communication channels between them

The set of processes plus the communication channelsis called
“MPI _COVM WORLD". More on the name later.

“Hello World” — Fortran

program hell o

Implicit none

include ‘npif.h

i nteger me, nprocs, ierr

call MPI _INIT(ierr)

call MPI _COWM SI ZE(MPI _COMM WORLD, nprocs, ierr)
call MPI _COVM RANK(MPI _COMM WORLD, ne, ierr)

print *, ‘“ hello fromproc ‘, nme, * of ‘, nprocs

call MPI _FI NALI ZE(i err)
end

e

“Hello World” — C

#i ncl ude <npi. h>
mai n(int argc, char *argv[])

{
int ne, nprocs
MPI _Init(&rgc, &argv)
VPl Cormm si ze(MPI _COVM WORLD, &nprocs)
VPl Cormm rank(MPI _COVM WORLD, &e)
printf(“H fromnode % of %\n”, ne, nprocs)
MPI _Finalize()
}

“Hello world” output

Run with 4 processes:

H fromnode 2 of 4
H fromnode 1 of 4
H fromnode 3 of 4
H fromnode 0 of 4

Note:
Order of output is not specified by MPI
Ability touse st dout isnot even guaranteed by MPI!

Critical MPI routines

MPI Init
Must always be called.
State of program (e.g., number of processes) is undefined before
Pass addresses of mai n() argumentsin C.

MPI _Finalize
Must always be called at end of program

<npi . h>and ‘mpif.h’
Define all predefined constants
Declare functions (prototypesin C)
Define all MPI-specific types (<npi . h> only)

C and Fortran differences

Names
In C, routines names start with VPl _
Next letter is capitalized, rest are lower case
In Fortran, case does not matter (technically, upped case only)

Return valuevs. ierr argument
In C, amost all routines are functions that return an integer error

code
In Fortran, amost all routines are subroutines that return an error

codein an integer “ierr” argument

C and Fortran differences (11)

MPI objects

In C, all MPI objects are represented by new datatypes, which are
handles.

MPI _Comm

MPI _Dat at ype

MPI _St at us

etc
These are typedefs, so that declarations look like:

MPI _Conmm myconm

In Fortran, MPI objects are represented by integers
Except for the status object, whichis

i nt eger status(MPI _STATUS_SI ZE)

Point-to-point communication in MPI

MPI_Send(data, ...) MPI_Recv(data, ...)

Point-to-point Example

Process 0 sends array “A” to process 1 which receivesit as“B”

A:

#define TAG 123

doubl e Al 10];

MPl _Send(A, 10, MPI _DOUBLE, 1, TAG MPI COVM WORLD)
B:

#define TAG 123

doubl e B[10];

MPI Recv(B, 10, MPI _DOUBLE, 0, TAG

VPl COMMI VWORLD, &st at us)

or

MPl _Recv(B, 10, MPI _DOUBLE, MPI _ANY_SOURCE, MPl ANY TAG,
VPl COVM VWORLD, &st at us)

MPI1_Send in detail

MPI _Send(buffer, count, datatype, dest, tag, comm)

void *buffer
* Address of data (any type)
i nt count
* Number of itemsto send (not necessarily full size of buffer)
* Number of items of given datatype, not number of bytes
WPl _Dat at ype dat at ype
 Describes type of datato be sent
i nt dest
* Rank of destination processin conm
int tag
* Integer label for message
MPI _Conmm comm
¢ Communicator containing group of processes and
communication channels

Use of datatypes

Predefined types offer:

Automatic data conversion on heterogeneous machines
No need to calculate size of datain bytes

Later on: user-defined datatypes provide more functionality.

Some Predefined datatypes

C:

MPl I NT
MPl _FLOAT

MPI _DOUBLE
MPl _CHAR

MPl _LONG

MPl _UNSI GNED

Fortran:

MPl _| NTEGER

MPl _REAL

MPI _DOUBLE_PRECI SI ON
MPl _CHARACTER

MPl _COMPLEX

MPl _LOGI CAL

L anguage-independent

MPI _BYTE

MPI1_Recv in detail

MPlI _Recv(buf, count, datatype, src, tag, conmm status)
voi d *buffer

* Location to place incoming data. Must have enough space.
i nt count
* Maximum number of items of given datatype to receive
* Actua number may be less but more is erroneous
MPI _Dat at ype dat at ype
 Describes type of datato be received
int src
» Rank of source processin comm
int tag
* Integer label for message
MPI _Conm conm
» Communicator containing group of processes and
communication channels
MPI _Status status
 Returns extrainformation about the incoming message

Source/Destination/Tag

src/ dest

dest

* Rank of process message is being sent to (destination)

* Must be avalid rank (0...N-1) in communicator
Src

* Rank of process message is being received from (source)
“Wildcard” MPI _ ANY_ SOURCE matches any source

t ag

On the sending side, specifies alabel for a message
On the receiving side, must match incoming message
On receiving side, MPI _ ANY_ _TAG matches any tag

Status argument

In C: MPI_Statusis astructure
st at us. MPl _TAGistag of incoming message
(useful if MPI _ANY_TAGwas specified)
st at us. MPI _SOURCE is source of incoming message
(useful if MPI _ANY_SOURCE was specified)
How many elements of given datatype were received
MPI _Get _count (I N status, |IN datatype, OUT count)

In Fortran: statusis an array of integer

i nt eger status(MPI _STATUS_SI ZE)
st at us(MPl _SOURCE)
status(MPI _TAG

In MPI-2: Will be able to specify MPI _STATUS | GNORE

Guidelines for using wildcards

Unlessthereisa good reason to do so, do not use wildcards
Good reasons to use wildcards:

Receiving messages from several sources into the same buffer but
don’t care about the order (use VPl _ ANY_SOURCE)

Receiving several messages from the same source into the same
buffer, and don’t care about the order (use MPl _ANY_TAG)

Exchanging Data

» Example with two processes: 0 and 1
» General data exchangeisvery similar

MPI_Send(A, ...) MPI_Send(A, ...
MPI_Recv(B, ...) MPI_Recv(B, ...

Thisiswrong!

Exchanging data (1)

#defi ne MYTAG 123
#defi ne WORLD MPI _COVW WORLD

Process 0:
VPl Send(A, 100, MPI_DOUBLE,
MPI _Recv(B, 100, MPI_DOUBLE,

MYTAG WORLD)
MYTAG WORLD, &stat us)

N

Process 1:
VPl Send(A, 100, MPI _DOUBLE, 0, MYTAG WORLD)
MPl _Recv(B, 100, MPI _DOUBLE, 0, MYTAG WORLD, &st atus)

The problem:
MPI _Send isanon-local operation — may not complete until a
matching receive is posted.
Both processes may block in MPl _Send, waiting for
corresponding receive. Thisis called deadlock.

Deadlock
The MPI specification is wishy-washy about deadlock.

A safe program does not rely on system buffering.

An unsafe program may rely on buffering but is not as portable.
Ignorethis. It isnot helpful.
Better (practical wisdom):

A correct program does not rely on buffering

A program that relies on buffering to avoid deadlock isincorrect.

In other words, it is your fault it your program deadlocks. Do not blame
the vendor (unless there is atrue bug in the implementation, of course.)

Non-blocking operations

Split communi cation operations into two parts.
First part initiates the operation. It does not block.
Second part waits for the operation to complete.

MPI _Recv(buf, count, type, dest, tag, conmm status)

MPI _Irecv(buf, count, type, dest, tag, comm
+

MPI Wit (, &status)
VPl _Send(buf, count, type, dest, tag, conm
MPI | send(buf, count, type, dest, tag, comm

+
MPI VIt (, &status)

Using non-blocking operations

#defi ne MYTAG 123

#defi ne WORLD MPI _COVM WORLD
MPI _Request request;

MPI _St at us st at us;

Process O:

MPI Irecv(B, 100, MPI _DOUBLE, 1, MYTAG WORLD, &request)
VPl _Send(A, 100, MPI _DOUBLE, 1, MYTAG WORLD)
(& equest, &status)

Process 1:

MPI Irecv(B, 100, MPI _DOUBLE, 0, MYTAG WORLD, &request)
MPlI _Send(A, 100, MPI_DOUBLE, 0, MYTAG WORLD)
(& equest, &status)

No deadlock
Data may be transferred “simultaneously”

Using non-blocking operations (I1)
Also possible to use nonblocking send:

#defi ne MYTAG 123

#defi ne WORLD WPl _COVM WORLD
MPI _Request request;

MPI _Status status;

p=1-ne; /* calculates partner in 2 process exchange */

Process 0 and 1:

MPI | send(A, 100, MPI _DOUBLE, p, MYTAG WORLD, &request)
MPI _Recv(B, 100, MPI _DOUBLE, p, MYTAG WORLD, &st atus)
MPI Wit (& equest, &status)

No deadlock

“status’ argument to MPlI Wi t doesn’t return useful info here.
Better touse | r ecv instead of | send if only using one.

Overlapping communication and computation

On some computers it may be possible to do useful work while datais

being transferred.
MPI _Request requests[2];
MPl _Status statuses[?2];

MPI _Irecv(B, 100, MPI _DOUBLE, p, 0, WORLD, &request[1])
MPI | send(A, 100, MPI _DOUBLE, p, 0, WORLD, &request[0])

do sone useful work here

MPI _Waitall (2, requests, statuses)

| r ecv/l send initiate communication

Communication proceeds “ behind the scenes’ while processor is
doing useful work

Need both | send and | r ecv for real overlap (not just one)
Hardware support necessary for true overlap

Operations on MPI_Request

MPI _Wai t (I NOUT request, QOUT status)

Waits for operation to complete

Returns information (if applicable) in status

Frees request object (and setsto MPI_ REQUEST _NULL)
MPI _Test (I NOUT request, OUT flag, OUT status)

Teststo seeif operation is complete

Returnsinformation in status if complete

Frees request object if complete
MPlI _Request free(l NOUT request)

Frees request object but does not wait for operation to complete
MPI _Vaitall (..., INOUT array_of _requests, ...)
MPlI Testall (..., INOUT array_of requests, ...)
MPlI _Wai t any/MPlI _Test any/MPI Wi t sone/MPlI _Test sone

MPI _Cancel cancelsor completes arequest. Problematic.

Non-blocking communication gotchas

Obvious caveats:

1. You may not modify the buffer after an| send() and before the
corresponding Wi t () . Results are undefined.

2. You may not look at or modify the buffer after anl r ecv() and before
the corresponding VAi t () . Results are undefined.

3. You may not have two pending | r ecv (') sfor the same buffer.
L ess obvious gotchas:

4. You may not look at the buffer after and | send() and before the
corresponding Wi t () .

5. You may not have two pending Isend() sfor the same buffer.

Why the isend() restrictions?

Everyone agrees they are user-unfriendly.
Restrictions give implementations more freedom

Situation:
Heterogeneous computer
Byte order is different in process 1 and process 2

I mplementation (example):
Swap bytes in the original buffer
Send the buffer
Swap bytes back to original order

Comments:
I mplementation does not have to allocate any additional space.
No implementations that currently do this (but there was)
There are other scenarios that have the same restrictions

MPI1_Send semantics

Most important:
Buffer may be reused after MPI_Send() returns
May or may not block until a matching receiveis called (non-local)

Others:
M essages are non-overtaking messages
Progress happens
Fairness not guaranteed

Other MPI point-to-point routines

MPI provides 4 communication codes, with dlightly different semantics

Standard MPI_Send/MPI_|send

Synchronous MPI_Ssend/MPI_Issend
Ready MPI_Rsend/MPI_Irsend
Buffered MPI_Bsend/MPI_Ibsend

Recommendation: Synchronous/Ready/Buffered are a waste of time.
They rarely help performance, often hurt, and can be difficult to use.

MPI provides “persistent communication:
MPI_Send init
MPI_Ssend init
MPI_Rsend_init
MPI_Bsend _init
These are even more of a waste of time.

Model Problem

Heat Equation:

ou _ g%
ot axz

Straightforward discretization in 1-D, explicit (!) time stepping:

n+1 n n n n
Py 0“i+1‘2“i Uiy

At h

Rearranging:

n+1 _ n, oAt n n, n _n n
U = U T (U — 20 U) = U+ A

Model Problem: Fortran 77+

paraneter (N = 1000)
real *8 UN, dU'N

¢ calculate dU
doi =2, N1
du(i) = (sigma * dt / h) * (U(i+l) - 2*U(i)+ Ui-1))
end do

C update U
doi =2, N1
Uii) = U(i) + du(i)
end do

 go from 2 to N-1 to implement fixed temperature at boundary
U initialized to an arbitrary temperature distribution
« dU(l)=dU(N) =0

Model Problem: Data Distribution

Focus attentionon U = U + dU (N = 15)
Layout of U and dU in serial memory:

du:| 1] 2[3[4]5]6|7|8|9|10]11]12][13][14]15]
I T
usl1]2[3]4|5]6[7]|8|9]10][11|12]13[14]15]

a: (112 345|617 o0)| m]w]m]uls]
PSS AN R T A A
o (112 3] a]s]|[e]7 e s]uw0]|n]rz[2s 5]

e Computation can be done entirely in parallel.
* U and dU must be “digned”
e U and dU must be distributed evenly

Model Problem: Communication

Focus attention on computation of dU (3-point stencil)
In serial memory:

ul1]2]3[4]5]6[7][8]9]10]11]12][13]14]15]

SRS OSSO OSSOSO O

du:|[1]2|3]4|5][6]7][8]9]10]11]12][13]14]15]

In distributed memory:

usl1]2]3]a|s5]|ll6]7]8]9]10]] 11]12][13]14]15]

au:| 1] 2]3]4][5] (11]12]13]14] 15]

Computation can be done in parallel but requires some communication.

Model Problem Data Layout

* Add “shadow entries’ to local arrays
» Break calculation into two parts. communication + computation
» Computation is entirely local

task 1 task 2 task 3

U 6]7[8]9]o

U [@x[2[z]<[s 8] i6111711914/1558

unlqggle 10(111121314)1556
oo owees

§6/112/:9141988

Model Problem I mplementation: Setup

progr am heat
inmplicit none
include "npif.h

integer N, MyN, ierr, nme, nprocs, left, right

logical is_ right, is_left

paranmeter (N = 1000)
c It's inpossible in F77 to determ ne the size of arrays
c at runtime so use F90 i nstead.

real, allocatable :: U(:), dU(:)

call mpi_init(ierr)
call npi_comm rank(MPI _COVMM WORLD, ne)
call npi_comm si ze(MPI _COVMM WORLD, nprocs)

MyN = N nprocs ! assunme Nis a nultiple of nprocs for now
all ocate(U(0: MyN+1), dU(0: MyN+1))

Model Problem Implementation: Data Exchange

c

set up topol ogy

left = me - 1

right = me + 1

if (left .ge. 0) is_left = .TRUE

else is left = .FALSE
if (right .1t. nprocs) is_right = . TRUE
else is right = .FALSE.

exchange data

if (is_left) call mpi_irecv(U(0), 1, Ml _REAL,
left, 0, MPI _COW WORLD, |request, ierr)

if (is_right)call mpi_irecv(U MyN+1), 1, MPI_REAL,
right, 0, MPI_COVMM WORLD, rrequest, ierr)

if (is_left) call nmpi_send(U(1), 1, MPI_REAL,
left, 0, MPI_COW WORLD, ierr)

if (is_right)call nmpi_send(U MWN), 1, Ml _REAL,
right, 0, MPI_COWM WORLD, ierr)

if (is_left) call nmpi_wait(lrequest, status)

if (is_right)call npi_wait(rrequest, status)

Model Problem Implementation: Data Update

c calculate dU
doi =1, MN
du(i) = (sigma * dt / h) * (U(i+1) - 2*U(i)+ Wi-1))
end do

Cc update U
doi =1, MN
Uii) = Ui) + duii)
end do

Collective Operations

Collective communication is communication among agroup of processes.
Broadcast
Synchronization (barrier)
Global operations (reductions)
Scatter/gather
Parallel prefix (scan)

AN
"
'
'
v

Barrier

VPl _Barri er (commruni cat or)
No process leaves the barrier until all processes have entered it.

Model for collective communication:
All processes in communicator must participate
Process might not finish until have all have started.

Broadcast

VPl Bcast (buf, len, type, , com)

Process with rank = root is source of data (in buf)
Other processes receive data

VPl Comm rank(MPI _COVWM WORLD, &nyi d);

if (nyid == 0) {
/* read data fromfile */
}

MPI Bcast(data, |en, type, 0, MPI _COVW WORLD);
Note:

All processes must participate
MPI has no “multicast” that sends to a subset of a communicator

Reduction

Combineelementsin input buffer from each process, placing result in
output buffer.

MPl _Reduce(i ndata, outdata, count, type, op, root, conm
MPI _All reduce(indata, outdata, count, type, op, comm)

Reduce: output appears only in buffer on root
Allreduce: output appears on all processes

operation types:

MPI _SUM
MPI _PROD
MPI _ MAX
MPI_M N

MPI _BAND

Data movement: all-to-all
All processes send and receive data from all other processes.

VPl _Al'ltoal | (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype,

conmm

For acommunicator with N processes.
sendbuf contains N blocks of sendcount elementseach
recvbuf receivesN blocksof r ecvcount elements each
Each process sends block i of sendbuf to processi
Each processreceivesblock i of r ecvbuf from processi

Example: FFT (usually)

Other collective operations

There are many more collective operations provided by MPI:
MPI _Gat her /Gat her v/Al | gat her /Al | gat herv
each process contributes local datathat is gathered into alarger

array

MPlI Scatter/Scatterv
subparts of asingle large array are distributed to processes

MPlI Reduce_scatter
same as Reduce + Scatter

Scan
prefix reduction

The“v” versions alow processes to contribute different amounts of data

Semantics of collective operations

For al collective operations:
Must be called by all processes in a communicator

Some collective operations aso have the “barrier” property:
Will not return until all processes have started the operation
MPI _Barrier,MPl _Allreduce, MPI _Alltoall,etc.

Others have the weaker property:
May not return until all processes have started the operation
MPI _Bcast, MPl _Reduce, MPI _Conmm dup, etc.

Performance of collective operations

Consider the following implementation if MPl _Bcast :
if (me == root) {
for (i =0; i <N i++) {
if (i '=nme) MPI_Send(buf, ..., dest=i, ...);
}

} else {
MPI _Recv(buf, ..., src=i, ...);

}
Non-scalable: time to execute grows linearly with number of processes.

High-quality implementations of collective operations use algorithms
with better scaling properties if the network supports multiple
simultaneous data transfers.

Algorithm may depend on size of data

Algorithm may depend on topology of network

An implementation of MPI_Bcast

0 — 1
step 1

0O— 2

1—3
step 2

0—4
1 —5
2 — 6
3 —7
step 3

Broadcast to N nodes can
be done in log(N) steps.

Datatypes
C

MPI I NT

MPI _FLOAT

VPl _DOUBLE

MPI _CHAR

VPl _LONG
e efc

Fortran
 MPI | NTECGER
 MPI _REAL
 MPI _DOUBLE PREC! SI ON
* MPI _CHARACTER
« MPI _LOGd CAL
e efc

L anguage-independent
« MPI _BYTE

Why datatypes?

Motivation for basic datatypes:

Automatic data conversion on heterogeneous systems
* different sizes
* different formats
Automatic size calculation on any system
o useful in Fortran (no sizeof)
More natural
* Specify count, not length in bytes

Heterogeneous?
Many applications are hype
Calculation on Cray plus Visualization on SGI is example of a
possibly good reason to support heterogeneity

User-defined datatypes

Applications can define arbitrary composite datatypes
Motivation
Naturalness
* Row or column of a matrix
» Complex data structure
New functionality
* Reduction functions on complex data types
* Ability to send different types of datain same message
Convenience
» Automatic local gather/scatter of data
Performance
* Inyour dreams

But:
Can be difficult to understand
Can hurt performance if not careful

User-defined datatypes: Contiguous

New datatype: 5 contiguous integers

MPI _Dat at ype

MPI _Type_ contlguous(S MPI _| NT,);
MPI _Type_conmmi t ();

/* ... use datatype ... */

MPI _Send(buf, 3, , dest, tag, comm;
[* ... %]

MPI _Type_free();

MPI _TYPE_CONTI GUOUS creates the new datatype

MPlI _TYPE COMM T makesit available for use

New datatype can be used anywhere a basic datatype can be used
MPI _TYPE_FREE deallocates storage

Contiguous datatype example

t ypedef struct {
int a[5];
} multi_precision_real;

mul ti _precision_real x[100], y[100];

MPI _Dat at ype np_type;

MPI _Op MP_ADD

void np add(void *a, void *b, MPI_Datatype type);

MPI Op create(np_add, 1, &W_ADD);
VPl _Type_contiguous(5, MPI _INT, &mp_type);
VPl _Type_comm t (&p_type);

VPl _Reduce(x, vy, 100, np_type, M° ADD, 0, conm;

Vector datatypes

Common situation: column of a matrix (C) or row of a matrix (Fortran)
Strided data

<—Matrix

/' Layout in memory

Sending a column (C) of a matrix (1)

Solution 1: one at atime

/* send 12th columm of this matrix */
int a[49][103];
int i;
for (i =0; i < 49; i++) {

MPI _Send(&a[i][11], 1, MPI _INT, ...);
}

Solution 2: pack it up and send it
int col[49];
for (i =0; i <49; i++) col[i] = a[i][11];
MPI _Send(col, 49, MPI _INT, ...);

MPI1_Type_ vector

MPI _Type_vector(count, bl ocklength, stride, oldtype,
newt ype)

int a[49][103];

VPl _Dat at ype col umtype;

MPI _Type vector (49, 1, 103, Ml _INT, &columtype);
MPI _Type_comi t (&col ummtype) ;

/* send 12th col um*/
VPl _Send(, 1, columtype, ...);

Type_vect or canbeused for arbitrary (fixed) blocklength/stride, e.q.:

count =
TR TFE TR procklength = 3
stride=5

Type_struct

VPl _Type_struct (count, array_of bl ockl engt hs,
array_of _di spl acenents, array_of types, newtype);

Allows arbitrary types/displacements

struct {
doubl e x; - | | | ‘
int af4]; 0 8 12 16 20
} nystruct;

i nt bl ockl engths[]={0, 4};

int displacenents[]={0, 8};

MPI _Datatype types[] = {MPI DOUBLE, WPl | NT};

VPl _type_struct (2, blocklengths, displacenents, types,
&nystruct _type);

Other type constructors

Hvect or
Like Vector but stride specified in bytes
| ndexed
Like vector but displacements, blocks may be different lengths
Like struct, but single type and displacements in elements
H ndexed
Like Indexed, but displacements in bytes

Other:
Possible to have absolute addresses in datatypes by using address
for displacement (compute addressusing MPl _Addr ess) and
MPI _BOTTOM for location of buffer.
Possible to put “holes” in datatypes so that cont i guous arrays
are aligned properly. See MPI _TYPE _UBand MPI _TYPE LB.
These can be very confusing. Avoid if possible. The MPI-2 function
MPI _TYPE_RESI ZED may make things easier.

When to use user-defined datatypes

What's the catch?
Complex datatypes can kill performance

Most implementations pack data into a contiguous buffer and send
I mplementation packing is much slower than user packing

Hidden holes in apparently contiguous datatype can dramatically
reduce performance

The theoretical performance win

Consider sending a strided datatype.

Pipeline
Pack Send
7
% Pack ablock of data
W Send it
// time While sending, pack next
% etc.
l l \j
* Niceidea

* No current implementations do this

Datatype recommendation

For contiguous data: use datatypes.
For non-contiguous data:

Structure code so that there is a clean interface to communication
Write two versions of the communication module

* quick and dirty

* “the MPI Way”

Quick and dirty means:
Pack the datainto your own buffer
Send as a contiguous MPI datatype

Really quick and dirty (not recommended):
Useuse MPI_BYTE for everything
Only useif alignment prevents tight packing

More information

Books
Using M PI, by William Gropp, Ewing Lusk, and Anthony
Skjellum, published by MIT Press ISBN 0-262-57104-8
MPI: The Complete Reference, by Snir, Otto, Huss-L ederman,
Walker, Dongarra. The MIT Press
Parallel Programming with M PI, by Peter Pacheco. Morgan
Kauffman Publishers Inc..

The standard

http://www.mcs.anl.gov/mpi/mpi-report-1.1/mpi-report.html

On-line Tutorials
http://www.mcs.anl.gov/mpi/tutorial/

WWW
http://www.mcs.anl.gov/mpi/index.html

