
Introduction to
HPC Approaches

Dr. Cevat Şener

HPC Seminar Series, Dept. of Computer Engineering, METU

Why HPC?
 Many important problems could not be solved yet even with

the fastest computers available
 Faster computers enable the formulation of more interesting

questions
 When a problem is solved, researchers find biggers to

tackle

Grand Challenge Problem Areas
 Wheather forecasting
 Economic modeling
 Computer-aided design
 Drug design
 Exploring the origins of universe
 Searching for extra-terrestial life
 Computer vision
 Bio-informatics
 …

Sequential Processing

 Single CPU

Parallel Processing will Help

 Modes of parallelism to achieve:
– Pipeline parallelism
– Data parallelism
– Control parallelism

Pipeline Parallelism
 A number of steps called segments or stages
 The output of one segment is the input of other segment

Stage 1 Stage 2 Stage 3

Data Parallelism
 Applying the same operation simultaneously to elements of a data set

Control Parallelism
 Applying different operations to different data elements simultaneously

What to Achieve: Speed-up
 It refers to how much a parallel algorithm is faster than a

corresponding sequential algorithm
Sp = T1 / Tn

where
p is the number of processors
T1 is the execution time of the sequential algorithm
Tp is the execution time of the parallel algorithm with p processors

 Ideal case when Sp = p
 However, it may not possible to achieve

due to overheads, e.g. Communication, synchronization etc.
 Called scalable if its speed-up remains acceptable

when p gets large

Parallel Computers:
Scale & Architecture
 Single chip
 Single system (node)
 Single location (cabinet, room, organization)
 Geographically distributed

Single Chip
 Pipelined

– Instructions are divided into a number of steps (segments, stages)
– At the same time, several instructions can be loaded in the machine

and be executed in different steps
 Multi-Core

– aka Chip-level Multi-Processor (CMP)
– Current processor trend
– Supports multi-threading successfully and efficiently in hardware

Single System
 Multiprocessors
 Consists of many fully programmable processors each

capable of executing its own program
 Shared Address Space Architecture
 Types:

– SMP (Symmetric Multiprocessor)
» A small number of microprocessors connected by a high-speed

bus or crossbar switch
– DSM (Distributed Shared Memory)

» The memory is physically distributed among nodes.
– PVP (Parallel Vector Processor)

» A small number of proprietary vector processors connected by a
high-bandwidth crossbar switch

Single Location
 Multicomputers
 Consists of many processors with their own memory
 No shared memory
 Processors interact via message passing loosely coupled

system
 Types:

– MPP (Massively Parallel Processing)
» Total number of processors > 1000; e.g. BlueGene

– Cluster
» Each node in system has less than 16 processors.

– Constellation
» Each node in system has more than 16 processors

Geographically Distributed
 Grid(s)
 Interconnection of geographically distributed clusters or

computers
 Very large capacity

Current Trend in Supercomputers

Interconnection Network

Memory

P P P P

Memory

P P P P

Memory

P P P P

Memory

P P P P

Multiprocessors Multiprocessors Multiprocessors Multiprocessors

 Clusters of SMPs,
– approaching to Constellations

Parallel Programming Models
 Parallel programming models are categorized as

– Implicit parallelism vs. Explicit parallelism
– Data-parallel model vs. Control-parallelism
– Message-passing model vs. Shared-variable model
– Fine-grained vs. Coarse-grained parallelism

 Models are not and should not be specific to hardware.
All should be able to be implemented on any hardware,
theoretically.
– e.g. shared-variable programming on distributed memory hardware,

or message-passing on shared memory

Implicit Parallelism
 The compiler and the run-time support system automatically

exploit the parallelism from the sequential-like program
written by users

Implicit Parallelism
 Ways to implement implicit parallelism

– Parallelizing (restructuring) compilers
» Compiler performs data-dependence and control-dependence

analysis on a sequential program’s source code
» Uses transformation techniques to convert sequential code into

parallel
– User directions

» User helps the compiler by providing additional information to
guide the parallelization process or by inserting compiler
directives in the source code

» User is responsible for ensuring that the code is correct after
parallelization

– Run-time parallelization
» Involves both the compiler and the run-time system

Explicit Parallelism
 The representation of concurrent computations by means of

primitives in the form of special-purpose function calls
 The programmer should explicitly use these primitives to

achieve parallelism
 The absolute programmer control over the parallel execution

Data-Parallel Model
 The same instruction or program segment executes over

different data sets simultaneously
 Massive parallelism is exploited at data set level
 Has a single thread of control
 Has a global naming space
 Applies loosely synchronous operation
 Parameter Study also falls into this category

Control-Parallelism
 aka Task parallelism or Function parallelism
 A form of parallelization of computer code across multiple

processors in parallel computing environments
 Focuses on distributing execution of tasks (processes or

threads) across different parallel computing nodes
(processors, cores)

Message-Passing Model
 Multithreading: program consists of multiple processes

– Each process has its own thread of control
– Both control parallelism (MPMD) and data parallelism (SPMD) are supported

 Asynchronous Parallelism
– All process execute asynchronously
– Must use special operation to synchronize processes

 Multiple Address Spaces
– Data variables in one process is invisible to the others
– Processes interact by sending/receiving messages

 Explicit Interactions
– Programmer must resolve all the interaction issues: data mapping,

communication, synchronization and aggregation
 Explicit Allocation

– Both workload and data are explicitly allocated to the process by the user

Shared-Variable Model
 Has a single address space
 Has multithreading and asynchronous model
 Data reside in a single, shared address space, thus does

not have to be explicitly allocated
 Workload can be implicitly or explicitly allocated
 Communication is done implicitly

– Through reading and writing shared variables
 Synchronization is explicit

Fine-Grained Parallelism
 Generraly, every loop has a chance of parallelism
 In this model, many of these loops are parallelized
 No need to know the details of the source or the algorithm
 Needs too frequent data-distribution, sychronization and

result-collection processes thrughout the execution
– Not that suitable over message-passing platforms

Coarse-Grained Parallelism
 Wider loops or larger modules are made parallel
 Less often data-distribution, sychronization and result-

collection processes
 Source code and the algorithm need to be well-understood

Comments on Models
 Implicit parallelism

– Easy to use
– Can reuse existing sequential programs
– Programs are portable among different architectures

 Data parallelism
– Programs are always determine and free of deadlocks/livelocks
– Difficult to realize some loosely sync. program

Comments on Models
 Message-passing model

– More flexible than the data-parallel model
– Lacks support for the work pool paradigm and applications that need

to manage a global data structure
– Widely-accepted
– Exploit large-grain parallelism and can be executed on machines

with native shared-variable model
 Shared-variable model

– No widely-accepted standard programs have low portability
– Programs are more difficult to debug than message-passing

programs

Examples
 MPI
 POSIX Threads
 HPF
 OpenMP
 Unified Parallel C
 JEE with Web Services
 MatLab with Distributed Toolbox
 Workflows
 Hybrids

MPI (Message Passing Interface)
 Exploits explicit and message-passing parallelism
 Most suitable to achieve control-parallelism,

but not that successful on fine-grained parallelism
 A standard portable message-passing library definition

developed in 1993 by a group of parallel computer vendors,
software writers, and application scientists.

 Many implememantations exist, like MPICH, OpenMPI etc.
 Available to both Fortran and C programs
 Available on a wide variety of parallel machines.

MPI Example

#include <mpi.h>
#define N 1000000
main(){
 double pi, sums, v, w=1.0/N;
 int i, mid, nth;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &mid);
 MPI_Comm_size(MPI_COMM_WORLD, &nth);
 for(i=mid; i<N; i+= nth) {
 v = (i+0.5) * w;
 sums += 4.0/(1.0+v*v);
 }
 MPI_Reduce(&sums,&pi,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
 pi *= w;
 if(mid == 0) printf("pi = %f\n",pi);
 MPI_Finalize();
}

POSIX Threads
 aka pthreads
 Belongs to explicit and shared-variable parallelism models
 Specified by the IEEE POSIX 1003.1c standard
 Requires significant programmer attention to detail
 Most suitable to achieve control-parallelism

POSIX Threads Example
#include <pthread.h>
#define MAX_THREADS 128
#define N 1000000
static int N_Threads = 0;
static double SUM[MAX_THREADS];
static double w;
main(){
 int i; double pi;
 pthread_t thr[MAX_THREADS];
 int args[MAX_THREADS];
 N_Threads = atoi(getenv("N_Threads"));
 w = 1.0/(N*N_Threads);
 pthread_setconcurrency(N_Threads);
 for(i=0; i<N_Threads−1; i++) {
 args[i] = i;
 if(pthread_create(&thr[i],(void*(*))PI,&args[i])){
 perror("Thread create"); exit(1);
 }
 }
 PI(&i); /* let main do part of the calculations */
 pi = SUM[i];
 for(i=0; i<N_Threads−1; i++) {
 pthread_join(thr[i], NULL);
 pi += SUM[i];
 }
 printf("pi = %f\n", pi*w);
}

void *PI(void *myid){
 int i; mid = *(int *)myid;
 double t = N*mid + 0.5;
 double ss = 0.0;
 for(i=0; i<N; i++) {
 v = (i+t)*w;
 ss += 4.0/(1.0+v*v);
 }
 SUM[mid] = ss;
 return NULL;
}

High Performance Fortran (HPF)
 aka Fortran 95
 An extension of Fortran 90 with constructs that support

parallel computing, published by the High Performance
Fortran Forum (HPFF)

 Assumes shared-variable model, and employs a
parallelizing compiler

 Most of the users and vendors have moved to OpenMP

HPF Example

PROGRAM piprog
INTEGER, PARAMETER:: N=1000000
REAL (KIND=8):: pi, w=1.0/N
pi = SUM((/ (4.0*w/(1.0+((i+0.5)*w)**2), i=1,N) /))
PRINT *, pi
END

OpenMP (Open Multi-Processing)
 Employs semi-implicit with compiler drectives* and shared-

variable parallelism
 An implementation of multithreading
 Consists of a set of compiler directives, together with library

routines and environment variables
 Currently only runs efficiently on shared-memory

multiprocessor / multicore platforms
 In C/C++ and Fortran on many architectures
 Most suitable for implementing data parallel paradigm

(*) in some references, it is accepted as “explicit” due to the need for
inserting these directives

OpenMP Example

#define N 1000000
main(){
 double pi, sums, v, w = 1.0/N;
 int i;
#pragma omp parallel for private(i,v) reduction(+:sums)
 for(i=0; i<N; i++) {
 v = (i+0.5)*w;
 sums += 4.0/(1.0+v*v);
 }
 pi = sums*w;
 printf("pi = %f\n",pi);
}

Unified Parallel C (UPC)
 An extension of the C programming language designed for

high-performance computing
 The programmer is presented with a single shared,

partitioned address space, where
– variables may be directly read and written by any processor,
– but each variable is physically associated with a single processor

 UPC uses data-parallel model of computation
 Supports explicit parallelism and shared-variable models

UPC Example
#include <upc_relaxed.h>
#define N 4
#define P 4
#define M 4
shared [N*P/THREADS] int a[N][P],c[N][M];
shared [M/THREADS] int b[P][M];
void main() {
 int i,j,l;
 upc_forall(i=0;i<N;i++;&c[i][0]) {
 for(j=0;j<M;j++) {
 c[i][j]=0;
 for(l=0;l<P;l++) c[i][j] += a[i][l]*b[l][j]
 }
 }
}

MatLab with Distributed Toolbox

 MatLab with Distributed Computing Toolbox + MATLAB
Distributed Computing Engine enable us to
– develop distributed and parallel MatLab applications and
– execute them on a cluster of computers without leaving your

technical computing development
 The toolbox and engine based on the MPI

– includes functions to support explicit communication, enabling you to
develop parallel applications

– supports parallel for loops and global array semantics via distributed
arrays for creating parallel applications without explicit message
passing

JEE with Web Services
 Java objects and service based approach
 Originally a distributed platform, can also be used for

parallelism
 Purely explicit
 Easier to integrate with industrial projects

Workflows
 A dataflow-like approach applied to Grid environments
 Ready data (input, intermediate result) is transfered from its

producer to consumer via file-transfer
– kind of message-passing

 Modeled as a DAG where
– each vertex represents a task, and
– each edge represents a file-transfer operation

OpenMP + MPI + Workflows
 OpenMP among the cores within a node
 MPI among the nodes within a cluster
 Workflows among the clusters within a Grid environment

