
Introduction to OpenMP

• Introduction• Introduction

• OpenMP basics

• OpenMP directives, clauses, and library

routines

What is OpenMP?

• What does OpenMP stands for?• What does OpenMP stands for?
– Open specifications for Multi Processing via collaborative work

between interested parties from the hardware and software
industry, government and academia.

• OpenMP is an Application Program Interface
(API) that may be used to explicitly direct multi-
threaded, shared memory parallelism.

• API components: Compiler Directives, Runtime Library
Routines. Environment Variables

• OpenMP is a directive-based method to invoke parallel

computations on shared-memory multiprocessors

What is OpenMP?

• OpenMP API is specified for C/C++ and Fortran.• OpenMP API is specified for C/C++ and Fortran.

• OpenMP is not intrusive to the orginal serial code:

instructions appear in comment statements for

fortran and pragmas for C/C++.

• OpenMP website: http://www.openmp.org

– Materials in this lecture are taken from various – Materials in this lecture are taken from various

OpenMP tutorials in the website and other places.

Why OpenMP?

• OpenMP is portable: supported by HP, • OpenMP is portable: supported by HP,
IBM, Intel, SGI, SUN, and others

– It is the de facto standard for writing shared
memory programs.

• OpenMP can be implemented
incrementally, one function or even one incrementally, one function or even one
loop at a time.

– A nice way to get a parallel program from a
sequential program.

How to compile and run OpenMP

programs?

• GNU and Intel compilers support OpenMP.• GNU and Intel compilers support OpenMP.

• To compile OpenMP programs:

‘icc example1.c -openmp’

• To run: ‘a.out’

– In the default setting, the number of threads used is

equal to the number of processors in the system.equal to the number of processors in the system.

– To change the number of threads:

• export OMP_NUM_THREADS=8 (bash)

OpenMP execution model

• OpenMP uses the fork-join model of parallel

execution.
– All OpenMP programs begin with a single master thread.– All OpenMP programs begin with a single master thread.

– The master thread executes sequentially until a parallel region is

encountered, when it creates a team of parallel threads (FORK).

– When the team threads complete the parallel region, they

synchronize and terminate, leaving only the master thread that

executes sequentially (JOIN).

OpenMP general code structure

#include <omp.h> #include <omp.h> #include <omp.h> #include <omp.h>
main () {main () {main () {main () {main () {main () {main () {main () {

int var1, var2, var3; int var1, var2, var3; int var1, var2, var3; int var1, var2, var3;
Serial code Serial code Serial code Serial code
.

/* /* /* /* Beginning of parallel section. Fork a team of threads. Specify variable scoping*/Beginning of parallel section. Fork a team of threads. Specify variable scoping*/Beginning of parallel section. Fork a team of threads. Specify variable scoping*/Beginning of parallel section. Fork a team of threads. Specify variable scoping*/
#pragma omp parallel private(var1, var2) shared(var3) #pragma omp parallel private(var1, var2) shared(var3) #pragma omp parallel private(var1, var2) shared(var3) #pragma omp parallel private(var1, var2) shared(var3)
{ { { {

/* /* /* /* Parallel section executed by all threads */Parallel section executed by all threads */Parallel section executed by all threads */Parallel section executed by all threads */
.
/* /* /* /* All threads join master thread and disband*/All threads join master thread and disband*/All threads join master thread and disband*/All threads join master thread and disband*/

} } } }
Resume serial codeResume serial codeResume serial codeResume serial code
.

} } } }

Data model

• Private and shared variables

•Variables in the global data space

are accessed by all parallel threads

(shared variables).

• Variables in a thread’s private

space can only be accessed by the

thread (private variables)thread (private variables)

#pragma omp parallel for private(privIndx, privDbl)
for (i = 0; i < arraySize; i++) {

for (privIndx = 0; privIndx < 16; privIndx++) {
privDbl = ((double) privIndx) / 16;
y[i] = sin(exp(cos(- exp(sin(x[i]))))) + cos(
privDbl); privDbl);

}
}

Parallel for loop index is

Private by default.

OpenMP directives

• Format:• Format:

#progma omp directive-name [clause,..] newline

(use ‘\’ for multiple lines)

• Example:

#pragma omp parallel default(shared)private(beta,pi)
• Scope of a directive is a block of statements { …}• Scope of a directive is a block of statements { …}

Parallel region construct

• A block of code that will be executed by multiple threads.• A block of code that will be executed by multiple threads.

#pragma omp parallel [clause …]
{
……

} (implied barrier)

Example clauses: if (expression), private (list), shared (list), default
(shared | private | none), reduction (operator: list), firstprivate(list),
lastprivate(list)lastprivate(list)

– if (expression): only in parallel if expression evaluates to true
– private(list): everything private and local (no relation with variables

outside the block).
– shared(list): data accessed by all threads
– default (none|shared|private)

• The reduction clause:

sum = 0.0;

#pragma parallel shared (n, x) private (I) reduction(+ : sum)

{

For(I=0; I<n; I++) sum = sum + x(I);

}

– Without the reduction clause, race condition occurs.

– With the reduction clause, OpenMP generates code
such that the race condition is avoided.

• Firstprivate(list): variables are initialized with the • Firstprivate(list): variables are initialized with the
value before entering the block

• Lastprivate(list): variables are updated going out
of the block.

Work-sharing constructs

• #pragma omp for [clause …]• #pragma omp for [clause …]

• #pragma omp section [clause …]

• #pragma omp single [clause …]

• The work is distributed over the threads

• Must be enclosed in parallel region

• No implied barrier on entry, implied barrier on

exit (unless specified otherwise)

The omp for directive: example

• Schedule clause (decide how the iterations

are executed in parallel):
schedule (static | dynamic | guided [, chunk])

The omp session clause - example

Synchronization: barrier

For(I=0; I<N; I++)

a[I] = b[I] + c[I];

Both loops are in parallel region

With no synchronization in between.a[I] = b[I] + c[I];

For(I=0; I<N; I++)

d[I] = a[I] + b[I]

With no synchronization in between.

What is the problem?

Fix: For(I=0; I<N; I++)

a[I] = b[I] + c[I];

#pragma omp barrier#pragma omp barrier

For(I=0; I<N; I++)

d[I] = a[I] + b[I]

Critical session

For(I=0; I<N; I++) {
Cannot be parallelized if sum is shared.……

sum += A[I];

……

}

Cannot be parallelized if sum is shared.

Fix:
For(I=0; I<N; I++) {

……

#pragma omp critical

{{

sum += A[I];

}

……

}

OpenMP environment variables

• OMP_NUM_THREADS• OMP_NUM_THREADS

• OMP_SCHEDULE

OpenMP runtime environment

• omp_get_num_threads• omp_get_num_threads

• omp_get_thread_num

• omp_in_parallel

• ……

Sequential Matrix Multiply

For (I=0; I<n; I++)For (I=0; I<n; I++)

for (j=0; j<n; j++)

c[I][j] = 0;

for (k=0; k<n; k++)

c[I][j] = c[I][j] + a[I][k] * b[k][j];c[I][j] = c[I][j] + a[I][k] * b[k][j];

OpenMP Matrix Multiply

#pragma omp parallel for private(j, k)#pragma omp parallel for private(j, k)

For (I=0; I<n; I++)

for (j=0; j<n; j++)

c[I][j] = 0;

for (k=0; k<n; k++)for (k=0; k<n; k++)

c[I][j] = c[I][j] + a[I][k] * b[k][j];

• Summary:

– OpenMP provides a compact, yet powerful

programming model for shared memory programming

• It is very easy to use OpenMP to create parallel programs.

– OpenMP preserves the sequential version of the – OpenMP preserves the sequential version of the

program

– Developing an OpenMP program:

• Start from a sequential program

• Identify the code segment that takes most of the time.

• Determine whether the important loops can be parallelized

– The loops may have critical sections, reduction variables, etc

• Determine the shared and private variables.

• Add directives

MPI vs. OpenMP

• Pure MPI Pro: • Pure OpenMP Pro:• Pure MPI Pro:

– Portable to distributed and
shared memory machines.

– Scales beyond one node

– No data placement problem

• Pure MPI Con:

– Difficult to develop and debug

– High latency, low bandwidth

– Explicit communication

• Pure OpenMP Pro:

– Easy to implement parallelism

– Low latency, high bandwidth

– Implicit Communication

– Coarse and fine granularity

– Dynamic load balancing

• Pure OpenMP Con:

– Only on shared memory
machines– Explicit communication

– Large granularity

– Difficult load balancing

machines

– Scale within one node

– Possible data placement
problem

– No specific thread order

Why Hybrid

• Hybrid MPI/OpenMP paradigm is the software trend for clusters
of SMP architectures.

• Hybrid MPI/OpenMP paradigm is the software trend for clusters
of SMP architectures.

• Elegant in concept and architecture: using MPI across nodes and
OpenMP within nodes. Good usage of shared memory system
resource (memory, latency, and bandwidth).

• Avoids the extra communication overhead with MPI within
node.

• OpenMP adds fine granularity (larger message sizes) and allows
increased and/or dynamic load balancing.increased and/or dynamic load balancing.

• Some problems have two-level parallelism naturally.

• Some problems could only use restricted number of MPI tasks.

• Could have better scalability than both pure MPI and pure
OpenMP.

A Pseudo Hybrid Code
Program hybrid

call MPI_INIT ()

call MPI_COMM_RANK (…)

call MPI_COMM_SIZE (…)

… some computation and MPI communication

#PRAGMA OMP PARALLEL DO SHARED(n)

do i=1,n

… computation

enddo

… some computation and MPI communication… some computation and MPI communication

call MPI_FINALIZE ()

end

