Introduction to OpenMP

e Introduction
 OpenMP basics

 OpenMP directives, clauses, and library
routines

What 1s OpenMP?

 What does OpenMP stands for?

— Open specifications for Multi Processing via collaborative work
between interested parties from the hardware and software
industry, government and academia.

 OpenMP 1s an Application Program Interface
(API) that may be used to explicitly direct multi-

threaded, shared memory parallelism.

e API components: Compiler Directives, Runtime Library
Routines. Environment Variables

 OpenMP i1s a directive-based method to invoke parallel
computations on shared-memory multiprocessors

What 1s OpenMP?

 OpenMP API 1s specitied for C/C++ and Fortran.

 OpenMP i1s not intrusive to the orginal serial code:
Instructions appear in comment statements for
fortran and pragmas for C/C++.

 OpenMP website:

— Materials 1n this lecture are taken from various
OpenMP tutorials in the website and other places.

Why OpenMP?

 OpenMP is portable: supported by HP,
IBM, Intel, SGI, SUN, and others

— It 1s the de facto standard for writing shared
memory programes.

 OpenMP can be implemented
incrementally, one function or even one
loop at a time.

— A nice way to get a parallel program from a
sequential program.

How to compile and run OpenMP
programs?

 GNU and Intel compilers support OpenMP.
e To compile OpenMP programs:

‘icc examplel.c -openmp’
 Torun: ‘a.out’

— In the default setting, the number of threads used 1s
equal to the number of processors in the system.

— To change the number of threads:
e export OMP_NUM_THREADS=8 (bash)

OpenMP execution model

=

{ parallel region } { parallel region }

—

master
thread

 OpenMP uses the fork-join model of parallel

execution.
— All OpenMP programs begin with a single master thread.

— The master thread executes sequentially until a parallel region is
encountered, when it creates a team of parallel threads (FORK).

— When the team threads complete the parallel region, they
synchronize and terminate, leaving only the master thread that
executes sequentially (JOIN).

OpenMP general code structure

#include <omp.h>
main () {
int var1, var2, var3;
Serial code

I* Beginning of parallel section. Fork a team of threads. Specify variable scoping’/
#pragma omp parallel private(var1, var2) shared(var3)

{

I* Parallel section executed by all threads 7/

I* All threads join master thread and disband’/

}

Resume serial code

Data model

e Private and shared variables

*Variables in the global data space
are accessed by all parallel threads
(shared variables).

P = private data space
G = global data space

e Variables in a thread’s private
space can only be accessed by the
thread (private variables)

#pragma omp parallel for private(privindx, privDbl)
for (i=0;i<arraySize; i++) {
for (privindx = 0; privindx < 16; privindx++) {
privDbl = ((double) privindx) / 16;
y[i] = sin(exp(cos(- exp(sin(x[i]))))) + cos(

privDDbl);
}
}
Parallel for loop index 1s
Private by default.
I by x Vi -
LA | %
--w priviondx - priviodx = - - priviodx --w privindx
privObl privCohkl privihhbl privhkl
¥ L

execution context for "arraylUpdate II”

OpenMP directives

 Format:
#progma omp directive-name [clause,..] newline

(use ‘\’ for multiple lines)

 Example:
#pragma omp parallel default(shared)private(beta,pi)

e Scope of a directive 1s a block of statements { ...}

Parallel region construct

e A block of code that will be executed by multiple threads.
#pragma omp parallel /clause ...]

} (iImplied barrier)

Example clauses: If (expression), private (list), shared (/ist), default
(shared | private | none), reduction (operaftor: list), firstprivate (/ist),
lastprivate (/ist)

— if (expression): only in parallel if expression evaluates to true

— private(list): everything private and local (no relation with variables
outside the block).

— shared(list): data accessed by all threads
— default (none|shared|private)

e The reduction clause:

sum = 0.0;
#pragma parallel shared (n, x) private (I) reduction(+ : sum)

{

For(I=0; I<n; I++) sum = sum + x(I);

}

— Without the reduction clause, race condition occurs.
— With the reduction clause, OpenMP generates code
such that the race condition 1s avoided.

* Firstprivate(list): variables are initialized with the
value before entering the block

e Lastprivate(list): variables are updated going out
of the block.

Work-sharing constructs

#pragma omp for [clause ...]

#pragma omp section [clause ...]

#pragma omp single [clause ...]

The work 1s distributed over the threads
Must be enclosed 1n parallel region

No implied barrier on entry, implied barrier on
exit (unless specified otherwise)

The omp for directive: example

#pragma omp parallel default(none))\
shared(n,a,b,c,d) private (i)

{

#pragma omp for nowait

for (1=0; i<n-1; 1i++)
b[i] = (a[i] + a[i+1]1)/2;

#pragma omp for nowait

for (i=0; i<n; i++)
d[i] = 1.0/c[i];

} /*-- End of parallel region --%*/

(implied barrier)

* Schedule clause (decide how the 1terations

are executed 1n parallel):
schedule (static | dynamic | guided [, chunk])

500 iterations on 4 threads

| ouided,s NN oy
1 RN B EHH
- IETHTE

L PRI FRUR 0 ETF B RDERER LN L]

.%2 -4+ H -
$: +HHH—H—+H———H—H4-HHHHHHH

o H-H- R

=3 — dynamic, 5 R
2 IR
LA .= s et

1
0

T T T T T T T T T 1
0 50 100 150 200 250 300 350 400 450 500

lteration Number

The omp session clause - example

#pragma omp parallel default (none)\
shared(n,a,b,c,d) private(1i)
{

#pragma omp sections nowait

{

#pragma omp section

for (1=0; 1<n-1; 1i++)
b[i] = (a[i] + a[i+1l])/2;

#pragma omp section

for (i=0; i<n; i++)
d[i] = 1.0/c[i];

} /*-- End of sections --*/

} /*-- End of parallel region --*/

#pragma omp parallel
#pragma omp for
for (...)

»

Qinnla PARAI | Fl Innn

#pragma omp parallel
#pragma omp sections

{ ...}

»

Sinale PARALLEL sections

#pragma omp parallel for
for (....)

#pragma omp parallel sections

{ ...}

Synchronization: barrier

For(I=0; I<N; I++) Both loops are in parallel region
a[I] = b[1] + c[1]; With no synchronization in between.
What 1s the problem?

For(I=0; I<N; I++)
d[I] = a[I] + bII] Fix: For(I=0; I<N; I++)

a[I] = b[1] + c[1];
#pragma omp barrier

For(I=0; I<N; I++)
d[I] = a[I] + b[I]

Critical session

For(I=0; I<N; I++) {

Cannot be parallelized if sum 1s shared.

oooooo FiX:
| For(I=0; I<N; I++) {

#pragma omp critical

{

sum += A[l];

OpenMP environment variables

« OMP_NUM_THREADS
e OMP_SCHEDULE

OpenMP runtime environment

omp_get_num_threads
omp_get_thread_num

omp_1n_parallel

Sequential Matrix Multiply

For (I=0; I<n; I++)
for (j=0; j<n; j++)
c[1]{j] = 0;
for (k=0; k<n; k++)
c[11{j] = clLl[y] + a[ll{k] * blk][j];

OpenMP Matrix Multiply

#pragma omp parallel for private(], k)
For (I=0; I<n; I++)
for (j=0; j<n; j++)
c[1iljl = 0;
for (k=0; k<n; k++)
cl1]lj] = cllllj] + allllk] * blk][j];

e Summary:

— OpenMP provides a compact, yet powerful
programming model for shared memory programming

e Itis very easy to use OpenMP to create parallel programs.
— OpenMP preserves the sequential version of the
program
— Developing an OpenMP program:

e Start from a sequential program

Identify the code segment that takes most of the time.

Determine whether the important loops can be parallelized

— The loops may have critical sections, reduction variables, etc

Determine the shared and private variables.
Add directives

MPI vs. OpenMP

Pure MPI Pro:

— Portable to distributed and
shared memory machines.

— Scales beyond one node
— No data placement problem

Pure MPI Con:

— Difficult to develop and debug
— High latency, low bandwidth

— Explicit communication
— Large granularity
— Difficult load balancing

* Pure OpenMP Pro:

Easy to implement parallelism
Low latency, high bandwidth
Implicit Communication
Coarse and fine granularity
Dynamic load balancing

e Pure OpenMP Con:

Only on shared memory
machines

Scale within one node

Possible data placement
problem

No specific thread order

Why Hybrid

Hybrid MPI/OpenMP paradigm 1is the software trend for clusters
of SMP architectures.

Elegant in concept and architecture: using MPI across nodes and
OpenMP within nodes. Good usage of shared memory system
resource (memory, latency, and bandwidth).

Avoids the extra communication overhead with MPI within
node.

OpenMP adds fine granularity (larger message sizes) and allows
increased and/or dynamic load balancing.

Some problems have two-level parallelism naturally.
Some problems could only use restricted number of MPI tasks.

Could have better scalability than both pure MPI and pure
OpenMP.

A Pseudo Hybrid Code

Program hybrid

call MPI_INIT ()

call MPI_COMM_RANK(...)

call MPI_COMM_SIZE (...)

.. some computation and MPI communication

#PRAGMA OMP PARALLEL DO SHARED(n)

doi1=1,n

... computation

enddo

... some computation and MPI communication
call MPI_FINALIZE ()

end

