
PBS INTERNALS



PBS & TORQUE

• PBS (Portable Batch System) - software system for 
managing system resources on workstations, SMP 
systems, MPPs and vector computers. It was based 
on Network Queuing System (NQS) 1986 NASA – first 
on Cray and then ported to other architectureson Cray and then ported to other architectures

• TORQUE Resource Manager (Tera-scale Open-
source Resource and QUEue manager)  - an open 
source version of PBS, providing control over:

– batch jobs 

– distributed compute nodes



Batch Systems

• provide a mechanism for submitting, launching, and

tracking jobs on a shared resource

• provide centralized access to distributed resources• provide centralized access to distributed resources

• allow users a ‘single system image’ in terms of the 

management of their jobs and the aggregate 

compute resources available.



A Batch System

Batch Server

(pbs_server)

Batch server

and cluster 

Configuration,

Job queue,

State table
Job, 

start, 

stop, 

status

qsub,

qdel,

qstat

Node,

job,

start,

Scheduler and 

additional 

cluster 

Configuration

Execution host

(pbs_mom)

Execution host

(pbs_mom)

Execution host

(pbs_mom)

Execution host

(pbs_mom)

Scheduler

start,

stop

statusJob, start, stop, status



TORQUE Features

• TORQUE provides enhancements over 

standard OpenPBS in the following areas:

�scalability�scalability

�fault tolerance

�scheduling interface 

�usability 



TORQUE Benefits

• Initiate and manage serial and parallel batch jobs 

remotely (create, route, execute, modify and/or 

delete jobs)

• Define and implement resource policies that 

determine how much of each resource can be used determine how much of each resource can be used 

by a job

• Apply jobs to resources across multiple servers to 

accelerate job completion time

• Collects information about the nodes within the 

cluster to determine which are in use and which are 

available.



PBS Structure

• General components (daemons)

– A resource manager pbs_server

– A scheduler pbs_sched

– Many “executors” pbs_mom– Many “executors” pbs_mom

moms (Machine Oriented Mini-servers)

• PBS provide an API to communicate with the 

server and another one to interface the moms



PBS Components

• Job server (pbs_server)

– provides the basic batch services 

• receiving/creating a batch job

• modifying the job• modifying the job

• protecting the job against system crashes

• running the job.

• cancelling a job

– logs information about jobs for accounting

– keeps track of all nodes and jobs



PBS Components

• Job Executor (pbs_mom)
– receives a copy of the job from the job server

– sets the job into execution

– creates a new session as identical user 

– returns the job's output to the user.– returns the job's output to the user.

• Job Scheduler (pbs_sched)
– runs site's policy controlling which job is run and 

where and when it is run

�PBS allows each site to use its own scheduler

�Currently Maui Scheduler is used in NAR



PBS Job Session

• From a user’s point of view

– Determine resource requirements(CPU time, 

memory, number of CPUs/node) for a job and 

write a batch script.write a batch script.

– Submit the script to the queuing system.

– Wait for the job to be scheduled and ran.

– Get the results.



PBS Job Session

• From the queuing system point of view
– User submits the job with qsub command

– PBS places the job into a queue based on its 
resource requests and runs the job when those 
resources become availableresources become available

– The job runs until it either completes or exceeds 
one of its resource request limits

– PBS copies the job’s output into the directory from 
which the job was submitted and optionally 
notifies the user via email that the job has ended



PBS Job Workflow

• When a scheduling interval starts
– Scheduler asks pbs_server the state of the nodes and of any jobs.

– Scheduler query moms for determining available resources (memory, 
cpu load, etc.)

– Scheduler examines job queues attempts to schedule any eligible jobs

– If there are enough resources free, scheduler allocates resources for 
job, returning job id and resource list to pbs_server for executionjob, returning job id and resource list to pbs_server for execution

– pbs_server contacts the pbs_mom on the first node assigned to the 
job (That pbs_mom is called the mother superior).

– The mother superior executes the jobs scripts submitted by the user (it 
also monitors resource usage of child processes and reports back to 
server.)

• When a PBS heartbeat happens
– The pbs_server will contact each pbs_mom and ask the status of its 

node.



Scheduler Problem

• The default TORQUE scheduler (pbs_sched)

– is very basic

– will provide poor utilization

– lacks some important features like– lacks some important features like

• backfill scheduler

• advance reservation

• Solution => MAUI Scheduler



MAUI

• MAUI is a scheduler (not a resource manager!) 

developed by the MAUI High Performance 

Computing Center (MHPCC) as an alternative 

to the default Loadleveler scheduler in their to the default Loadleveler scheduler in their 

IBM SP (Scalable POWERparallel)

environment.

• Ported to PBS by using the appropriate API 

provided by PBS.



MAUI Features

• Scheduling behavior is constrained by way of throttling 
policies
– Both soft and hard limits used

– Applied to each iteration

• Three main algorithms used• Three main algorithms used
– Backfill

– Priority

– Fairshare

• Reservations for high priority jobs

• More control parameters on users

• Commands for querying the scheduler



MAUI Philosophy

• Maui is particularly concerned about scheduling 
multiprocessor jobs

• How do you arrange a matching set of processors 
to be simultaneously available for a single job ?

• Maui tries to plan the execution of such jobs at a • Maui tries to plan the execution of such jobs at a 
particular time when it expects sufficient 
processors to be available - on the basis of the job 
maximum walltime parameters.

• It establishes reservations on a set of processors 
for a job – ensuring all the processors are free at 
the planned time



MAUI Philosophy

• As the reservations take effect, more and more 
processors become idle as the planned job time 
approaches

• A scheme called backfill tries to exploit these idle 
processors by running short single/few processor processors by running short single/few processor 
jobs out of priority order in the gaps

• Maximum efficiency is achieved by scheduling big 
jobs first and running small jobs in the gaps

• Maui really cares about walltimes



Scheduling a Job in MAUI
•Jobs are submitted into a pool of jobs.

•Forget about queues, MAUI considers all jobs.

•Each job has a priority number calculated.

4005
4500

•The highest priority is executed first.

Maui scans through all the jobs 

and nodes:

•When a job is submitted.

•When a job completes.

•And at periodic intervals.

3203 20700

-300



Scheduling Objects

• MAUI functions by manipulating these five 
elementary objects

�Jobs�Jobs

�Nodes

� Reservations

� QOS (Quality of service) structures

� Policies 



Scheduling Objects

• A job consists of one or more requirements, 
each of which requests a number of resources 
of a given type.

• A node is a collection of resources with a 
particular set of associated attributes.
Policies are generally specified via a 
particular set of associated attributes.

• Policies are generally specified via a 
configuration file and serve to control how 
and when jobs start.

• The MAUI Scheduler allows administrators 
fine grain control over QOS levels on a per 
user, group and account basis. 



Backfill

• Backfill is a scheduling optimization

• Allows some jobs to be run 'out of order' so 
long as they do not delay the highest priority long as they do not delay the highest priority 
jobs in the queue

• Offers significant scheduler performance 
improvement



Backfill Algorithm

• Uses wallclock limit = an estimation of the wall 
time (or elapsed time) from job start to job 
finish to find “holes”( amounts of time 
dedicated to a job that has already finished or 
is waiting); it fills these “holes” with execution 
dedicated to a job that has already finished or 
is waiting); it fills these “holes” with execution 
of other jobs in the queue

• Better estimates of wallclock limit will increase 
the amount of improvement backfill 
scheduling can provide for your jobs 



Priority Algorithm

• Default is trivial FIFO but is weighted and 

combined based on a range of job related 

components

• These components have subcomponents such • These components have subcomponents such 

as user, group, priority, QoS, etc.

• Weight values are configurable parameters

and values for each component is calculated 

from subcomponents listed above



Components of a Job’s Priority
• CRED = Credentials, e.g user or group name, submission queue, ...

• FS = Fairshare, e.g considers historical usage of user, group, ....

• RES = Resources, e.g. Number of nodes requested, length of job, ..

• SERV = Service, e.g Time job has been queued, 

• TARGET = Target, e.g Jobs must run within two days. • TARGET = Target, e.g Jobs must run within two days. 

• USAGE = Usage e.g Time consumed by jobs running now.

Each component is weighted and summed to form the priority,

PRIORITY   = CREDWEIGHT * CREDComp +  FSWEIGHT * FSComp + ...

•A common mistake is to leave say FSWEIGHT at 0 having 

configured FS.



Example Subcomponents

• CRED components are static contributions to the overall 
priority number. e.g username, groupname, submission queue.

Config Attribute Value Summary

CREDWEIGHT 10 Component Weight

USERWEIGHT 20 Subcomponent’s WeightUSERWEIGHT 20 Subcomponent’s Weight

USERCFG[user] PRIORITY=1000 Static Priority for user

CLASSWEIGHT 5 Subcomponent’s Weight

CLASSCFG[queue] PRIORITY=10000 Static Priority for queue

CREDComp   = 

PRIORITY     = CREDWEIGHT * (CREDComp) +  FSWEIGHT * FSComp + ...CREDWEIGHT CREDComp 

USERWEIGHT * (USERCFG[user] priority)

+ CLASSWEIGHT * (CLASSCFG[queue] priority) + ...



Fairshare

• A mechanism which allows historical resource 
utilization information to be incorporated into 
job feasibility and priority decisions

• Composed of several parts which handle • Composed of several parts which handle 
historical information: fairshare windows, 
impact, usage and target

• All parts are configurable parameters

• Purpose of fairshare is to steer existing 
workload 



Fairshare Components

• Fairshare Windows

– Actually they are timeframes

– Length and number of windows to be considered
while evaluating historical information can be 
controlled by FSINTERVAL and FSDEPTH controlled by FSINTERVAL and FSDEPTH 
parameters

• Impact

– Defines importance of each window for fairshare
evaluation

– Can be configured using FSDECAY parameter



Fairshare Components

• Usage

– Defines metric to be used for fairshare evaluation

– 2 types of usage metrics (controlled by FSPOLICY 
parameter)

1. Dedicated usage tracks what the scheduler assigns to the 1. Dedicated usage tracks what the scheduler assigns to the 
job

2. Consumed usage tracks what the job actually uses

• Target

– Expected usage value for a user, group or class
(queue) used for fairdhare evaluation

– Determined and configured by administrator



Example Fairshare Calculation
FSPOLICY = consumed usage

100
100

Assigned walltime Used walltime

FSDEPTH=4

75

25

75

20
43

20

100

15
0

25

50

75

100

0-24 hours 24-48 hours 48-72 hours 72-96 hours

FSDECAY=0.5

FSDEPTH=4

FSINTERVAL=24h



Example Fairshare Calculation

• Then, a comparison between target and usage for the 

user, group or class gives the contribution to the job’s 

overall priority.

• Difference or ratio can be used in this comparison (here • Difference or ratio can be used in this comparison (here 

ratio is used)

FSComp   = 

PRIORITY     = CREDWEIGHT * (CREDComp) +  FSWEIGHT * FSComp + ...CREDWEIGHT * CREDComp 

FSUSERWEIGHT * (1 – user’s fsusage/user’s fstarget)

+ FSGROUPWEIGHT * (1 - group’s fsuage/group’s fstarget) + ...



Soft and Hard Limits

• Hard and soft limit specification allow a site to balance 
both fairness and utilization on a given system

• They provide scheduling flexibility

• Soft limits
– more constraining limits– more constraining limits

– in effect in heavily loaded situations and reflect tight 
fairness constraints

• Hard limits
– more flexible limits

– specify how flexible the scheduler can be in selecting jobs 
when there are idle resources available after all jobs 
meeting the tighter soft limits have been started



Example of Soft and Hard Limits

BLOCKED IDLE RUNNING

cenga jobs MAXJOB=2,4

cengb jobs MAXJOB=4,5

Job Slot

123456

578911 12

1234678910 1112 5

5 2346789101112



Advance Reservations

• An advance reservation is the mechanism by 
which MAUI guarantees the availability of a set of 
resources at a particular time

• Every reservation consists of 3 major components
– a list of resources– a list of resources

– a timeframe

– an access control list

• Additionally, a reservation may also have a 
number of optional attributes controlling its 
behavior and interaction with other aspects of 
scheduling



Advance Reservations

• Access control list (ACL): determines who or 

what can use the reserved resources.

• While reservation ACL's allow particular jobs 

to utilize reserved resources, they do not forceto utilize reserved resources, they do not force

the job to utilize these resources. Maui will 

attempt to locate the best possible 

combination of available resources whether 

these are reserved or unreserved. 



Preemption

• Basically preemption is pausing a low priority (or

time consuming) job when a higher priority (or

quickly finishing) job requests some resources

• Can be controlled manually or by using a • Can be controlled manually or by using a 

preemptive backfill policy

• Type of preemption determines how the 

PREEMPTEE (paused/low priority) job continues

when the PREEMPTOR (high priority) job is 

finished



Types of preemption

• Job Requeue

– Preemptee jobs are terminated and returned to the job queue. 

• Job Suspend

– Preemptee jobs stop executing but remain in memory. 

– While a suspended job frees up processor resources, it may continue to – While a suspended job frees up processor resources, it may continue to 

consume swap and/or other resources.

• Job Checkpoint

– Preemptee jobs save off their current states (checkpointing) and terminates.

– When resources become available again, the checkpointed job is restarted 

and it resumes execution from its checkpoint.

� Resource manager should support it for job checkpointing to work

� Torque supports checkpointing by using a kernel level package called

BLCR (Berkeley Lab Checkpoint/Restart)



Thank you…

Any questions?


